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Course Structure

• 20 lectures 
• pptx on moodle the day before the lecture.

• 4 classes

• 3+1 practicals

• Sit-down (closed book) exam
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Classes and Practicals

• 4 classes in 4 groups – please distribute!
• Mostly maths and conceptual questions

• Will be similar to the exam questions

• 4 practicals with 3 sheets
• Mostly code 
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Practicals

1. Image filtering and transformations
2. Image Classification & Interpretability
3. Object Detection & Diffusion
4. Coordinate Networks and Representation Learning (optional)

Signing off will normally happen in the last half hour of each session or at the beginning of the 
following one.

As usual, when checking your work, the demonstrator will want to see a working version of the 
program in action, as well as appropriate commenting of your code and sketches indicating the 
design steps. Try to make your report as concise as possible, perhaps in the form of appropriate 
comments to your code.
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Books

• Multiple View Geometry in Computer Vision
Richard Hartley and Andrew Zisserman, Cambridge 
University Press, link

• Deep Learning
Ian Goodfellow, Yoshua Bengio and Aaron Courville. MIT 
Press 2016, link

• Pattern Recognition and Machine Learning
Christopher M Bishop, Springer 2007, link
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https://www.robots.ox.ac.uk/~vgg/hzbook/
https://www.deeplearningbook.org/
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


Python

• python 3 (typical packages: opencv-python, numpy, sci-py, matplotlib, pytorch, …)

• Everything runs inside Google Colab notebooks
https://colab.research.google.com

• Alternative: you can run things locally on your laptop
• You will need to manage your environment yourself (use conda)
• Demonstrators will not have time to help you with setup problems

• Most lectures come with a Colab notebook containing code for 
the examples in the slides. 
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https://colab.research.google.com/


This Lecture Today

• Should give you a general understanding of what kind of 
problems we think about in CV.

• Will introduce some historical context and how things 
evolved to where we are.

• Might motivate why we will look at fundamentals before we 
dive into the flashy topics later in the course.
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Computer Vision Now
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Rapid progress

• arXiv/cs 200 
submissions/day (2021)

• Keeping up is difficult

• Benchmarks evaluate 
progress for individual tasks

• Ideas translate between 
sub-fields
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Progress in Computer Vision

• Currently: 4 main drivers of improvement: 
• Data

• ML improvements (optimisers, architectures, etc.)

• Engineering/tuning (often task specific)

• Good ideas (rare compared to other factors)

• Papers often contain a mixture

• This course: (mostly) good ideas 
-> easier to judge for older approaches
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Where is Computer Vision now?

13Slide credits: John Barron – Scholars and Big Models Workshop, CVPR 2023
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Rocket speed - 1953

• USAF prediction for rocket speed

• Time vs. fraction of light speed

• Vastly overestimates progress

• Nuclear rockets

• Interstellar travel

15Slide credits: John Barron – Scholars and Big Models Workshop, CVPR 2023



Computer Graphics

16Slide credits: John Barron – Scholars and Big Models Workshop, CVPR 2023



Computer Vision
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Computer Vision

• It is very difficult to predict where we are

• Towards the end of this curve progress transitions from 
academia to industry

• So far, we thought we are at the end many times and were 
wrong (AI, self-driving, CNNs, etc.) 

• It might not be a sigmoid after all!
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(Recent) CV History Overview

• 1960-1970: Blocks, Edges and Model Fitting

• 1970-1981: Low-level vision: stereo, flow, shape-from-x

• 1985-1988: Neural Networks, backprop., self-driving

• 1990-2000: Dense stereo and multi-view stereo, MRFs

• 2000-2010: Features, descriptors, structure-from-motion

• 2010-20??: Learning, deep learning, large datasets, rapid 
growth

19
History slides credits: Andreas Geiger - History of Computer Vision 2021 & Svetlana Lazebnik – Computer Vision: Looking Back to Look Forward



Historical Context
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1957: Stereo(photogrammetry)

• Gilbert Hobrough: analog implementation of 
stereo image correlation

• Used to create elevation maps 
(Photogrammetry, since 1840) 
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Wild B8 (721x produced 1961 -1972)

Louis, Hobrough Gilbert. "Methods and apparatus for correlating corresponding points in two images." U.S. Patent No. 2,964,642. 13 Dec. 1960



1958-1962: Rosenblatt’s Perceptron

• First algorithm and 
implementation for training 
single linear “threshold neuron”

• Perceptron criterion: 
𝐿 𝑤 = − σ𝑛∈𝑀 𝑤𝑇𝑥𝑛𝑦𝑛

• Convergence proof: Novikoff

22Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological review 65.6 (1958): 386.



1963: Larry Roberts – Blocks World

• Scene Understanding for Robotics
• Extracts edges 

• Infers 3D structure from topological 
structure of edges

• “It is assumed that a photograph is a 
projection of… known three-
dimensional models… These 
assumptions enable a computer to 
obtain a reasonable, three-
dimensional description from the edge 
information in a photograph by means 
of a topological, mathematical 
process.”

23Roberts, Lawrence G. Machine perception of three-dimensional solids. Diss. Massachusetts Institute of Technology, 1963.



Blocks World now 
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Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives
Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A. Efros, Mathieu Aubry, NeurIPS 2023



1966: MIT Summer Vision Project

• Solve computer vision as a 
summer project

• Committed to block world 
ideas
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1969: Perceptrons book

• Minsky and Papert
• Several discouraging results
• Perceptrons cannot solve the XOR 

problem
• Largely contributed to the following 

“AI winter”
• 70s: mostly symbolic AI
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1970: MIT Copy Demo

• Vision + Robotics

• Recover the structure of a 
scene

• Plan robot movement to 
copy the block arrangement

• Only works in ideal 
conditions

• Causes attention to 
robustness for low level 
vision tasks

27Patrick Winston and the MIT AI Lab Copy Demo https://people.csail.mit.edu/bkph/phw_copy_demo.shtml



1980s: Advances in ML

• Neocognitron: Fukushima (1980)

• Back-propagation: Rumelhart, Hinton & 
Williams (1986)
• Origins in control theory and optimization: 

Kelley (1960), Dreyfus (1962), Bryson & Ho 
(1969), Linnainmaa (1970)

• Application to neural networks: Werbos 
(1974)

• Parallel Distributed Processing: 
Rumelhart et al. (1987)

• Neural networks for digit recognition: 
LeCun et al. (1989)

28

Fukushima (1980)



1990s Theme: Geometry

• Fundamental matrix: Faugeras (1992)

• Normalized 8-point algorithm: Hartley 
(1997)

• RANSAC for robust fundamental matrix 
estimation: Torr & Murray (1997)

• Bundle adjustment: Triggs et al. (1999)

• Hartley & Zisserman book (2000)

• Projective structure from motion: 
Faugeras and Luong (2001)
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Tracking and Optical Flow

30



Visual Tracking

Visual tracking involves the identification of some characteristic of the scene in 
successive images.

2D tracking

follow and perhaps control the image position of some entity as it moves from 
frame to frame over time.

3D (or pose) tracking

use image measurements (possibly involving 2D tracking) to update the 6 
degrees of freedom (3 translation + 3 rotation) which define 3D pose.
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2D Visual Tracking

Both, 2D and 3D tracking require a model of appearance, sufficient 
to identify high cross-correlation between frames.

In 2D tracking, the appearance model might relate to
• a single point
• a small patch, possibly deformable
• a contour, possibly deformable
• a line element
• ...?

Let's start simply by tracking an image point ...
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Point Tracking

• Using a bright spot detector

Not robust: we need to 
incorporate

• Stronger appearance/ 
measurement models;

• Image and/or scene dynamics

Points -> patches
Sharkey, P., McLauchlan, P. F., Reid, I. D. and Murray, D. W. 
Real-time Control of a Reactive Stereo Head/Eye Platform. 

International Conference on Automation, Robotics and Computer Vision,  199233



Template Tracking

Template 𝑇

Image I

Sum of squared differences 
between image I and 
template 𝑇 at every 
location (𝑢, 𝑣)
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• Tracking by Detection (each frame processed individually)
• Very slow: (#pixels_image * #pixels_template) comparisons
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1981: Lucas-Kanade Template Tracking

Improving the efficiency:

• Formulate search as an optimisation problem using 
brightness constancy as our objective function

• 𝐸 is a non-convex function over the image 𝐼 

• Suppose the starting point is 𝑡𝑥 , 𝑡𝑦
𝑇
 e.g., detection in prev. 

frame

• LK searches for an update 𝛿𝑥 , 𝛿𝑦
𝑇
 of the starting point

𝐸 𝑢, 𝑣 = ෍

𝑥,𝑦

𝐼 𝑢 + 𝑥, 𝑣 + 𝑦 − 𝑇 𝑥, 𝑦
2
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Generalised LK Tracking

• Simple update rule that iteratively refines the tracked position

• Any differentiable warp works

• Further optimization: pre-compute template gradients and 
warp “the other way”

• In-depth LK analysis: 

 Lucas-Kanade 20 Years On: A Unifying Framework
 Simon Baker and Iain Matthews
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LK Tracker Insights

• A general difficulty with trackers relying too heavily on the spatial 
relationships between pixels is that they are prone to break due to 
partial occlusion and orientation changes in the scene.

• Appearance changes can be compensated by updating the 
template from frame to frame

• Can lead to “drift”:

• The template will gradually pick up the background and 
eventually “stick”.

• Can be avoided when background is simple, or

• With a segmentation mask
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2010: Tracking by Detection

• Pure tracking can fail (occlusions, drift, blurry frames, etc…)

• Idea: integrate a detector into the tracking pipeline

• Tracking-Learning-Detection (TLD) Framework (Kalal et al, 
2010)
• the target object is defined by a bounding box in a single frame.
• a template/patch-based tracker follows the object frame to frame.
• a random forest-based detector localizes the object and corrects 

the
• tracker if needed.
• learning is used to improve the detector.

38



Tracking by Detection

Kalal, Z., Mikolajczyk, K. and Matas, J., 2011. Tracking-learning-detection. IEEE transactions on pattern analysis and machine intelligence 39



Tracking by Detection

Benfold, B. and Reid, I., 2011, June. Stable multi-target tracking in real-time surveillance video. In CVPR 2011 40



2016: CNN Tracking

• Instead of comparing pixel 
intensities: compare 
features

• Learn features by comparing 
the score map to ground-
truth detections from the 
same video

• Very simple and fast

Bertinetto, Luca, Jack Valmadre, Joao F. Henriques, Andrea Vedaldi, and Philip HS Torr. "Fully-convolutional siamese networks for object tracking." ECCV 2016 41
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Point Tracking Revival 

43Harley, Adam W., Zhaoyuan Fang, and Katerina Fragkiadaki. "Particle video revisited: Tracking through occlusions using point trajectories." ECCV, 
2022.



Optical Flow

• How does every pixel move from one frame to another?

• “Tracking every pixel”

• Correspondence problem 

• Some pixels can go missing (occlusion, image border, etc…)

• Some pixels can appear or change colour (e.g. traffic light)

• Ground-truth difficult to obtain
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1981: Optical Flow

• Pattern of apparent 
motion: densely tracking 
pixels between frames

• Horn-Schunck algorithm

• 2D correspondence 
search: more difficult 
than stereo

45



Optical Flow – The Beginnings 

Raw estimate Smoothed estimate

46



Optical Flow – The Beginnings

• Intensity based optical flow 

• Problems with uniform-coloured regions

• Difficult to regularise
• Can be combined with LK tracking

• Smoothness constraints

• Difficult evaluation on very few scenes
• Synthetic with ground truth

• Qualitative on real scenes

47



Optical Flow – Flying Things

• Easier to create – automatic 
pipeline

• Generalises well to real data

-> optical flow is a low level 
vision problem and thus 
sim2real transfer works well 

Mayer, Nikolaus, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox.
 "A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.“, CVPR 201648



Optical Flow - Sintel

Butler, Daniel J., Jonas Wulff, Garrett B. Stanley, and Michael J. Black. "A naturalistic open source movie for optical flow evaluation.“ ECCV 201249



Optical Flow –Learned: FlowNet

• Again Siamese architecture

• Compute correlation volume inside network

• Trained on FlyingThings3D

50



Optical Flow –Learned: FlowNet

A. Dosovitskiy, P. Fischer, E. Ilg, P. Haeusser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers and T. Brox 
“FlowNet: Learning Optical Flow ith Convolutional Networks), ICCV 2015 51



Optical Flow –Now(ish): RAFT

Improvements (by RAFT and other papers):
• Better backbone architectures

• Multi-scale correlation volume

• Iterative refinements: predict and update the flow estimate through 
several iterations

Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow.“, ECCV 202052



Motion Estimation

Point Tracking 
Long-term tracking of individual points

PIPs

TAP-Net

Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories. Harley et. al. ECCV 2022
TAP-Vid: A Benchmark for Tracking Any Point in a Video. Doersch et al., NeurIPS D&B 2022

RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. Teed et al. , ECCV 2020

Optical Flow
Dense correspondences between a pair of frames

RAFT
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Shape-from-X

54



1970: Shape from Shading

• Recover 3D from a single 2D 
image

• Assume simple lighting and 
material (Lambertian with 
constant albedo)

• Strong smoothness assumptions

Shape-from-X
• Shading: Horn (1970)
• Contour: Guzman (1971), Waltz 

(1975), etc.
• Texture: Bajczy & Lieberman (1976)
• Stereo: Marr & Poggio (1976)
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1978: Intrinsic Images

• Decompose images into its 
intrinsic 2D layers
• Reflectance

• Shading

• Shape

• Motion, etc.

• Useful for downstream tasks: 
e.g. removing lighting 
simplifies object detection

56



1978: Intrinsic Images

57MIT Intrinsic Images dataset (2009) Wu, Jiaye, et al. "Measured Albedo in the Wild: Filling the Gap in Intrinsics 
Evaluation." arXiv preprint arXiv:2306.15662 (2023)



1980: Photometric Stereo

• Recover 3D from 
multiple (>2) 2D images 
with varying lighting

• Highly detailed and 
accurate

• Still Lambertian lighting 
assumption – relaxed 
later

58



Shape-from-X now(-ish)

59

instance-specific 3D shapessingle-view images of a category

Training Data Output

Unsup3D

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild
S Wu, C Rupprecht, A Vedaldi

CVPR 2020



Stereo
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1981: Essential Matrix

• 2-view Geometry: a matrix that 
maps points to epipolar lines

• Correspondence search 
becomes a 1D problem

• Essential Matrix can be 
computed from 2D 
correspondences

• Rediscovery of known ideas 
>100 years old

61H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a scene from two projections". Nature.



1992: Structure-from-motion

• Estimating the 3D structure from 
image collections of static scenes

• Static scenes require only a 
single (moving) camera

• Closed-form SVD solution: 
Tomasi-Kanade factorisation for 
orthographic projection.

• Later: non-linear least squares 
for projective cameras

62Tomasi, Carlo, and Takeo Kanade. "Shape and motion from image streams under orthography: a factorization method." IJCV (1992)



1992: Iterative Closest Points

• Register two point clouds 
by minimizing the distance 
between closest points

Uses:

• Align partial scans

• Estimate relative camera 
poses from point clouds

• Localization within 3D maps 

63

https://github.com/yassram/iterative-closest-point

Besl, Paul J., and Neil D. McKay. "Method for registration of 3-D shapes." Sensor fusion IV: control paradigms and data structures. Vol. 1611. Spie, 1992.



1998: Multi-view stereo

• 3D reconstruction from 
multiple input images – this 
time with level-set methods

• Surfaces instead of points

• Modelling visibility

• Convergence proofs

64Faugeras, Olivier, and Renaud Keriven. "Complete dense stereovision using level set methods." Computer Vision—ECCV'98



2000s: Large-scale SfM

65

• 2006: Photo Tourism 
(Snavely et al,, SIGGAPH’06)
• 3D reconstruction from 

internet images

• Large scale compute

• 2009: Building Rome in a 
Day (Agarwal et al. ICCV’09)
• Search “rome” on flickr

• Reconstruction: 150k images, 
21h, 500CPUs



2016: COLMAP

66

Sparse model of central Rome using 21K photos produced by 
COLMAP’s SfM pipeline

Schonberger, Johannes L., and Jan-Michael Frahm. "Structure-from-motion revisited." CVPR 2016.

• Open-source C++ framework

• Integrating the best features from prior work

• Defacto standard for SfM



Structure from Motion (still)

• Individual components have been enhanced with DL

• COLMAP pipeline remains mostly unchanged
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Neural Radiance Fields

68



1850: Photosculpture

• 24 photographs of an object/person 

• Cut contour from wood

• Assemble radial sculpture

69



1986: The Rendering Equation

𝐿𝑜 𝑥, 𝜔𝑜 , 𝜆, 𝑡 = 𝐿𝑒 𝑥, 𝜔𝑜, 𝜆, 𝑡 + 𝐿𝑟(𝑥, 𝜔𝑜, 𝜆, 𝑡) 

70

Immel, David S.; Cohen, Michael F.; Greenberg, Donald P. "A radiosity method for non-diffuse environments”, SIGGRAPH 1986
Kajiya, James T."The rendering equation". Conference on Computer graphics and interactive techniques 1986

emitted radiance
(glowing things)

reflected radiance

How much light (of wavelength 𝜆) is leaving a point 𝑥 in the direction of 𝜔𝑜 at time 𝑡?



1986: The Rendering Equation

𝐿𝑟 𝑥, 𝜔𝑜, 𝜆, 𝑡 = න
Ω

𝑓𝑖 𝑥, 𝜔𝑖 , 𝜔𝑜, 𝜆, 𝑡 𝐿𝑖 𝑥, 𝜔𝑖 , 𝜆, 𝑡 𝜔𝑖 ⋅ 𝒏 𝑑𝜔𝑖  

71

bidirectional reflectance
distribution function

(BRDF)

incoming radiance at 𝑥
from direction 𝜔𝑖 

surface normal

𝒏



1965: The BRDF

𝑓𝑟 𝜔𝑖 , 𝜔𝑟 =
𝑑𝐿𝑟(𝜔𝑟)

𝐿𝑖 𝜔𝑖 𝜔𝑖 ⋅ 𝑛  𝑑𝜔𝑖

• Positivity: 𝑓𝑟 𝜔𝑖 , 𝜔𝑟 > 0

• Reciprocity: 𝑓𝑟 𝜔𝑖 , 𝜔𝑟 = 𝑓𝑟 𝜔𝑟 , 𝜔𝑖

• Energy conservation: 

∀𝜔𝑖 , න
Ω

𝑓𝑟 𝜔𝑖 , 𝜔𝑟 𝜔𝑟 ⋅ 𝑛 𝑑𝜔𝑟 ≤ 1

72Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface". Applied Optics

diffuse specular mirror



2000s: Lightfield camera arrays

• Use many synchronized cameras to capture a scene from 
many angle simlutaneously

• Film use: The Matrix (1999)

73



2020: Neural Radiance Fields

• Input: Image collection

• Learning: mapping coordinates (x,y,z) 
to color and occupancy

• Output: rendering from novel 
viewpoints

74Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis.“, ECCV 2020



NeRF now(-ish)

• Improvements in generalisation, speed, quality, etc.

• Dynamic scenes remain difficult – triangulation is ambiguous

75Li, Zhengqi, et al. "Dynibar: Neural dynamic image-based rendering." CVPR. 2023 (Best Paper Honourable Mention)



Gaussian Splatting

• Intuition: ray-casting through every 
pixel is wasteful (mostly empty space)

• Represent the scene as a collection of 
points with size: 3D Gaussians (mean & 
covariance)

• Projecting 3D Gaussians to the image 
plane results in approx. 2D Gaussians 
(Zwicker et al.,2002)

• Advantage: only spend time/memory 
on the surface of objects

76Kerbl, B., Kopanas, G., Leimkühler, T., & Drettakis, G. (2023). 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics (ToG)



Summary

• Computer vision is usually harder than we think.

• There are many open problems.

• “just throw a big network at a lot of data” usually does not 
work – we need to be smart about it.

• Current trend: old ideas can improve things quite a bit.
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