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Course Structure

» 20 lectures
* pptx on moodle the day before the lecture.

4 classes
 3+1 practicals

e Sit-down (closed book) exam



Classes and Practicals

4 classes in 4 groups - please distribute!
« Mostly maths and conceptual questions
« Will be similar to the exam questions

» 4 practicals with 3 sheets
« Mostly code



Practicals

1.Image filtering and transformations

2.Image Classification & Interpretability

3. Object Detection & Diffusion

4, Coordinate Networks and Representation Learning (optional)

Signing off will normally happen in the last half hour of each session or at the beginning of the
following one.

As usual, when checking your work, the demonstrator will want to see a working version of the
program in action, as well as appropriate commenting of your code and sketches indicating the
design steps. Try to make your report as concise as possible, perhaps in the form of appropriate
comments to your code.



Books

« Multiple View Geometry in Computer Vision
Richard Hartley and Andrew Zisserman, Cambridge
University Press,

* Deep Learning
an Goodfellow, Yoshua Bengio and Aaron Courville. MIT
Press 2016,

 Pattern Recognition and Machine Learning
Christopher M Bishop, Springer 2007,


https://www.robots.ox.ac.uk/~vgg/hzbook/
https://www.deeplearningbook.org/
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Python

. python 3 (typical packages: opencv-python, numpy, sci-py, matplotlib, pytorch, ...)

 Everything runs inside Google Colab notebooks

« Alternative: you can run things locally on your laptop
 You will need to manage your environment yourself (use conda)
« Demonstrators will not have time to help you with setup problems

« Most lectures come with a Colab notebook containing code for
the examples in the slides.


https://colab.research.google.com/

This Lecture Today

 Should give you a general understanding of what kind of
problems we think about in CV.

« Will introduce some historical context and how things
evolved to where we are.

« Might motivate why we will look at fundamentals before we
dive into the flashy topics later in the course.



Computer Vision Now



Rapid progress

+ arXiv/cs 200 s | = £
submissions/day (2021) Zio00 | = 0
» Keeping up is difficult p | = B
- Benchmarks evaluate Prwi= i
progress for individual tasks oo | = F
- Ideas translate between oo | 2
sub-fields =l




Progress in Computer Vision

 Currently: 4 main drivers of improvement:
« Data
« ML improvements (optimisers, architectures, etc.)
« Engineering/tuning (often task specific)
« Good ideas (rare compared to other factors)

« Papers often contain a mixture

* This course: (mostly) good ideas
-> easier to judge for older approaches



Where is Computer Vision now?

Progress

Time

Slide credits: John Barron - Scholars and Big Models Workshop, CVPR 2023



Where is Computer Vision now?
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Computer Graphics

Real-Time Rendering
(Video Games)

Photorealistic Rendering

Progress

Academic Rendering
(Phong Shading, Cornell Boxes)

CUDA (Al),
Photography,

/ 3D Printing

Time

Oscilloscope, Wireframes
1970s 1980s 1990s 2000s
Slide credits: John Barron - Scholars and Big Models Workshop, CVPR 2023

2010s



Computer Vision
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Progress

Time



Computer Vision

e [tis very difficult to predict where we are

« Towards the end of this curve progress transitions from
academia to industry

 So far, we thought we are at the end many times and were
wrong (Al, self-driving, CNNs, etc.)

* [t might not be a sigmoid after all!



(Recent) CV History Overview

« 1960-1970: Blocks, Edges and Model Fitting

« 1970-1981: Low-level vision: stereo, flow, shape-from-x

« 1985-1988: Neural Networks, backprop., self-driving

* 1990-2000: Dense stereo and multi-view stereo, MRFs

« 2000-2010: Features, descriptors, structure-from-motion

« 2010-207?: Learning, deep learning, large datasets, rapid
growth

History slides credits: Andreas Geiger - History of Computer Vision 2021 & Svetlana Lazebnik - Computer Vision: Looking Back to Look Forward



Historical Context



1957: Stereo(photogrammetry) 4

* Gilbert Hobrough: analog implementation of
stereo image correlation

« Used to create elevation maps
(Photogrammetry, since 1840)

21

Louis, Hobrough Gilbert. "Methods and apparatus for correlating corresponding points in two images." U.S. Patent No. 2,964,642. 13 Dec. 1960



1958-1962: Rosenblatt’'s Perceptron

e First algorithm and
implementation for training
single linear “threshold neuron”

» Perceptron criterion:

Lw) = — Xnem WTxn:Vn
« Convergence proof: Novikoff

Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological review 65.6 (1958):

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July.- 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.
| Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
lducted_ the demonstration. He
said ‘the machine would be the
first device to think as the hu-

man brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, ’

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers, -

Without Human Controls

The Navy said the pex'cepf;ronl
would be the- first non-living!
mechanism ‘“capable of receiv-|
ing, recognizing and identifying|
its surroundings without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. . ‘

Later Perceptrons will be able
to recognize people and call out

‘their names and instantly trans-

late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-'
scious of their existence.

1958 New York
Times...

In today’s demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q"” for the left
squares and “O" for the right

squares.
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘“self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

386. 22



1963: Larry Roberts

« Scene Understanding for Robotics
 Extracts edges

» Infers 3D structure from topological
structure of edges

 “It is assumed that a photograph is a
projection of... known three-
dimensional models... These
assumptions enable a computer to
obtain a reasonable, three-
dimensional description from the edge
information in a photograph by means
of a topological, mathematical
process.”

A

Roberts, Lawrence G. Machine perception of three-dimensional solids. Diss. Massachusetts Institute of Technology, 1963. 23



Blocks World now

-t

Differentiable Blocks World: Qualitative 3D Decomposition by Renderir{;g Primitives
Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A. Efros, Mathieu Aubry, NeurIPS 2023 24



1966: MIT Summer Vision Project

 Solve computer vision as a
summer project

« Committed to block world
ideas

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. No. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers
effectively in the construction of a significant part of a visual system.
The particular task was chosen part%g because it can be segmented into
sub-problems which will allow individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of "pattern recognition'l.

25



1969: Perceptrons book

Expanded Edition

 Minsky and Papert
» Several discouraging results

» Perceptrons cannot solve the XOR
problem

- Largely contributed to the following St
“AI winter” - -

» 70s: mostly symbolic AT h ) BE

Marvin L. Minsky
Seymour A. Papert




1970: MIT Copy Demo

* Vision + Robotics

e Recover the structure of a
scene

 Plan robot movement to
copy the block arrangement

* Only works in ideal
conditions

e Causes attention to
robustness for low level
vision tasks

Patrick Winston and the MIT Al Lab Copy Demo https://people.csail.mit.edu/bkph/phw_copy_demo.shtml 27



1980s: Advances in ML

* Neocognitron: Fukushima (1980)

« Back-propagation: Rumelhart, Hinton &
Williams (1986)

« Origins in control theory and optimization:
Kelle %/(1960) Dreyfus (1962), Bryson & Ho
(1969), Llnnalnmaa (1970)

 Application to neural networks: Werbos
(1974)

» Parallel Distributed Processing:
Rumelhart et al. (1987)

* Neural networks for digit recognition:
LeCun et al. (1989)

~

Wi

contrast
extraction

edge recognition
extraction layer

Fukushima (1980)



1990s Theme: Geometry

« Fundamental matrix: Faugeras (1992)

* Normalized 8-point algorithm: Hartley Multiple View

(1997) Geometry

» RANSAC for robust fundamental matrix his e
estimation: Torr & Murray (1997)

« Bundle adjustment: Triggs et al. (1999)

« Hartley & Zisserman book (2000)

* Projective structure from motion:
~augeras and Luong (2001)

Richard Hartley and Andrew Zisserman

29



Tracking and Optical Flow



Visual Tracking

Visual tracking involves the identification of some characteristic of the scene in
successive images.

2D tracking

follow and perhaps control the image position of some entity as it moves from
frame to frame over time.

3D (or pose) tracking

use image measurements (possibly involving 2D tracking) to update the 6
degrees of freedom (3 translation + 3 rotation) which define 3D pose.



2D Visual Tracking

Both, 2D and 3D tracking require a model of appearance, sufficient
to identify high cross-correlation between frames.

In 2D tracking, the appearance model might relate to
* a single point

« a small patch, possibly deformable

* a contour, possibly deformable

e a3 line element
«

Let's start simply by tracking an image point ...



Point Tracking

« Using a bright spot detector

Not robust: we need to
Incorporate

 Stronger appearance/
measurement models;

« Image and/or scene dynamics

Points -> patches

Real-time Control of a Reactive Stereo Head/Eye Platform.
International Conference on Automation, Robotics and Computgs Vision, 1992



Template Tracking

Template T Sum of squared differences

between image I and
template T at every
location (u, v)

Energy E

E(uv) = Z (I(u+x,v+y) —T(x,y))2
eoel-55]x-57
« Tracking by Detection (each frame processed individually)

« Very slow: (#pixels_image * #pixels_template) comparisons
34



1981: Lucas-Kanade Template Tracking

E(u,v) = Z(I(u +x,v+y)—T(x, y))2
X,y

Improving the efficiency:

» Formulate search as an optimisation problem using
brightness constancy as our objective function

£ is a non-convex function over the image I

- Suppose the starting point is (¢, ty)T e.g., detection in prev.
frame

- LK searches for an update (6, (Sy)T of the starting point



Generalised LK Tracking

 Simple update rule that iteratively refines the tracked position

 Any differentiable warp works

 Further optimization: pre-compute template gradients and
warp “the other way”

* In-depth LK analysis:

Lucas-Kanade 20 Years On: A Unifying Framework
Simon Baker and lain Matthews



LK Tracker Insights

A general difficulty with trackers relying too heavily on the spatial
relationships between pixels is that they are prone to break due to
partial occlusion and orientation changes in the scene.

« Appearance changes can be compensated by updating the
template from frame to frame

e Can lead to “drift":

« The template will gradually pick up the background and
eventually “stick”.

e Can be avoided when background is simple, or
« With a segmentation mask



2010: Tracking by Detection

 Pure tracking can fail (occlusions, drift, blurry frames, etc...)
* |[dea: integrate a detector into the tracking pipeline

* Tracking-Learning-Detection (TLD) Framework (Kalal et al,
2010)

* the target object is defined by a bounding box in a single frame.

 a template/patch-based tracker follows the object frame to frame.

. ahrandom forest-based detector localizes the object and corrects
the

* tracker if needed.
* learning is used to improve the detector.



Tracking by Detection

Leaming

#) tos-|

-~

L, 105V

Kalal, Z., Mikolajczyk, K. and Matas, J., 2011. Tracking-learning-detection. IEEE transactions on pattern analysis and machite intelligence



Tracking by Detection

Benfold, B. and Reid, I., 2011, June. Stable multi-target tracking in real-time surveillance videgdn CVPR 2011



2016: CNN Tracking

Z g =
127x127x3 6x6x128 \

* —
» Instead of comparing pixel <= /
intensities: compare R
features - TS

255%255x3

* Learn features by comparing
the score map to ground-
truth detections from the
same video

 Very simple and fast

Bertinetto, Luca, Jack Valmadre, Joao F. Henriques, Andrea Vedaldi, and Philip HS Torr. "Fully-convolutional siamese networks for object track%g.” ECCV 2016



2016: CNN Tracking

Score Map

* Instead of comparing pixel §

Intensities: compare
features

Ground Truth Reference Image

™

.

N

 Learn features by comparing :

the score map to ground-
truth detections from the
same video

 Very simple and fast

Bertinetto, Luca, Jack Valmadre, Joao F. Henriques, Andrea Vedaldi, and Philip HS Torr. "Fully-convolutional siamese networks for object tracking." ECCV 2016



Point Tracking Revival

.
.

o
ge
2

R

POOSE OOHGSS
ORI

Harley, Adam W., Zhaoyuan Fang, and Katerina Fragkiadaki. "Particle video revisited: Tracking through occlusions using point trajectories." ECCV,
2022.



Optical Flow

- How does every pixel move from one frame to another?
 “Tracking every pixel”

« Correspondence problem

« Some pixels can go missing (occlusion, image border, etc...)
« Some pixels can appear or change colour (e.g. traffic light)

 Ground-truth difficult to obtain



1981: Optical Flow

 Pattern of apparent
motion: densely tracking
pixels between frames

« Horn-Schunck algorithm

« 2D correspondence
search: more difficult
than stereo

Determining Optical Flow

Berthold K.P. Horn and Brian G. Schunck
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA 02139, U.S.A.

ABSTRACT
Optical flow cannot be computed locally, since only one independent measurement is available from
the image sequence at a point, while the flow velocity has two components. A second constraint is
needed. A method for finding the optical flow pattern is presented which assumes that the apparent
velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative
implementation is shown which successfully computes the optical flow for a number of synthetic image
sequences. The algorithm is robust in that it can handle image sequences that are quantized rather
coarsely in space and time. It is also insensitive 10 quantization of brightness levels and additive noise.
Examples are included where the assumption of smoothness is violated at singular points or along
lines in the image.

Berthola Horﬁ. ‘

o4 BrianO Schunck"




Optical Flow - The Beginnings
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Optical Flow - The Beginnings

* Intensity based optical flow
* Problems with uniform-coloured regions

» Difficult to regularise
« Can be combined with LK tracking
« Smoothness constraints

Difficult evaluation on very few scenes
 Synthetic with ground truth
* Qualitative on real scenes




Optical Flow - Flying Things

 Easier to create - automatic
pipeline
e Generalises well to real data

-> optical flow is a low level
vision problem and thus
sim2real transfer works well

Mayer, Nikolaus, Eddy llg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox.
"A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimatigg.”, CVPR 2016



Optical Flow - Sintel

Butler, Daniel J., Jonas Wulff, Garrett B. Stanley, and Michael J. Black. "A naturalistic open source movie for optical flow evaluatien.” ECCV 2012



Optical Flow -Learned: FlowNet

FlowNetCorr

« Again Siamese architecture
« Compute correlation volume inside networ c(xhxz)=l E[(f;gwn),fz(an)}
 Trained on FlyingThings3D

50



Optical Flow -Learned: FlowNet

P. Fischer, A. Dosovitskiy, E. llg, P. Hausser, L. Hazirbas, V. Golkov
P.v.d. Smagt, . Cremers, 1. Brox

FlowNet:

Learning Uptical Flow
with Convolutional Networks

A. Dosovitskiy, P. Fischer, E. llg, P. Haeusser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers and T. Brox
“FlowNet: Learning Optical Flow ith Convolutional Networks), ICCV 2015



Optical Flow -Now(ish): RAFT

Improvements (by RAFT and other papers):
« Better backbone architectures
 Multi-scale correlation volume

* Iterative refinements: predict and update the flow estimate through
several iterations

' | 3
J 4D Correlation Voume: ( ' l ( ’ l o () ' l

T f e O H Optica] Flow

Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flayy.”, ECCV 2020



Motion Estimation

Point Tracking Optical Flow

Long-term tracking of individual points Dense correspondences between a pair of frames

Video and Query Points
4 A {4 4

Input

Optical Flow

Output

Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories. Harley et. al. ECCV 2022
TAP-Vid: A Benchmark for Tracking Any Point in a Video. Doersch et al., NeurIPS D&B 2022
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. Teed et'at , ECCV 2020

Predicted Tracks |
with Occlusion



Shape-from-X



1970: Shape from Shading

« Recover 3D from a single 2D
image

« Assume simple Il%htlng and
material (Lambertian with
constant albedo)

» Strong smoothness assumptions

Shape-from-X
« Shading: Horn (1970)

« Contour: Guzman (1971), Waltz
(1975), etc.

« Texture: Bajczy & Lieberman (1976)
 Stereo: Marr & Poggio (1976)




1978: Intrinsic Images

* Decompose images into its
intrinsic 2D layers
 Reflectance
 Shading
« Shape
« Motion, etc.

 Useful for downstream tasks:
e.g. removing lighting
simplifies object detection

56



1978: Intrinsic Images

original shading

reflectance specularity

. . Wu, Jiaye, et al. "Measured Albedo in the Wild: Filling the Gap in Intrinsics
MIT Intrinsic |mage5 dataset (2009) Evaluation." arXiv preprint arXiv:2306.15662 (2023) 57



1980: Photometric Stereo

 Recover 3D from

mu ltl p l S (>2) ZD I m ages Photometric method for determining surface orientation
with va r'ying I|ght|ng from multiple images

Robert J. Woodham

pepartment of Computer Science
University of British Columbia

¢ H igh |y d eta i | e d a n d ﬂﬁ:ﬁ:ﬁ:’?'&?gmn Robert J.
accurate

V6T 1W5

Abstract. A novel technique called photometric stereo is introduced.
The idea of photometric stereo is to vary the direction of incident illumi-
nation between successive images, while holding the viewing direction
constant. It is shown that this provides sufficient information to deter-

° Sti | | L a m b e rti a n | i g h ti n g mine surface orientation at each image point. Since the imaging geom-

etry is not changed, the correspondence between image points is known
M a priori. The technique is photometric because it uses the radiance
a S S u l I I ptl O n - re a Xe values recorded at a single image location, in successive views, rather
than the relative positions of displaced features.
| a te r Photometric stereo is used in computer-based image understanding. It
can be applied in two ways. First, it is a general technique for deter-
mining surface orientation at each image point. Second, it is a technique
for determining object points that have a particular surface orientation.
These applications are illustrated using synthesized examples.



Shape-from-X now(-ish)

Training Data Output

Unsup3D

single-view images of a category instance-specific 3D shapes

Unsupervised Leaming of Probably Symmetric Deformable 3D Objects from Images in the Wild
S Wu, C Rupprecht, A Vedaldi
59 CVPR 2020



Stereo



1981: Essential Matrix

 2-view Geometry: a matrix that
maps points to épipolar lines

« Correspondence search
becomes a 1D problem

e Essential Matrix can be
computed from 2D
correspondences

Left view Right view

 Rediscovery of known ideas
>100 years'old

H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a scene from two projections". Nature.



1992: Structure-from-motion

* Estimating the 3D structure from
image collections of static scenes

e Static scenes require only a
single (moving) camera
(a)

* Closed-form SVD solution: o i 0
Tomasi-Kanade factorisation for '
orthographic projection.

- Later: non-linear least squares R 4
for projective cameras

Tomasi, Carlo, and Takeo Kanade. "Shape and motion from image streams under orthography: a factorization method." [/CV (1992) 62



1992: lterative Closest Points

 Register two point clouds
Oy minimizing the distance
petween closest points
Uses:

* Align partial scans

e Estimate relative camera
poses from point clouds

e Localization within 3D maps

ICP iterations = 1
White: Original point cloud
Red: ICP aligned point cloud

https://github.com/yassram/iterative-closest-point

Besl, Paul J., and Neil D. McKay. "Method for registration of 3-D shapes." Sensor fusion 1V: control paradigms and data structures. Vol. 1611. Spie, 1992. 63



1998: Multi-view stereo

* 3D reconstruction from
multiple input images - this
time with level-set methods

e Surfaces instead of points

Fig. 3. Multicamera images of 3D objets. On the left hand side, two crossing synthetic
tori (24 images). On the right hand side, real images: two human heads (18 images).

@ G @

« Modelling visibility
« Convergence proofs

Fig. 4. Evolution of the surface for the two tori.

Faugeras, Olivier, and Renaud Keriven. "Complete dense stereovision using level set methods." Computer Vision—ECCV'98



2000s: Large-scale StM

« 2006: Photo Tourism
(Snavely et al,, SIGGAPH'06)

« 3D reconstruction from
Internet images

« Large scale compute

« 2009: Building Rome in a
Day (Agarwal et al. ICCV'09)

e Search “rome” on flickr

 Reconstruction: 150k images,
21h, 500CPUs




2016: COLMAP

« Open-source C++ framework
* Integrating the best features from prior work
 Defacto standard for StM

Sparse model of central Rome using 21K photoS prod"uced‘by
COLMAP’s SfM pipeline
Schonberger, Johannes L., and Jan-Michael Frahm. "Structure-from-motion revisited." CVPR 2016.

66



Structure from Motion (still)

Correspondence Search

Matching

Geometric Verification

Incremental Reconstruction

r Initialization -y ———————— ->
| i
[

Image Registration

Outlier Filtering

Triangulation

Bundle Adjustment

Reconstruction

* Individual components have been enhanced with DL
* COLMAP pipeline remains mostly unchanged

6/




Neural Radiance Fields



1850: Photosculpture

24 photographs of an object/person
e Cut contour from wood
« Assemble radial sculpture

69



1986: The Rendering Equation

How much light (of wavelength 1) is leaving a point x in the direction of w, at time t?

L,(x,w,, A, t) = L,(x,w,, A, t) + L.(x,w,, A, t)

emitted\adiance reflectea/radiance
(glowing things)

Immel, David S.; Cohen, Michael F.; Greenberg, Donald P. "A radiosity method for non-diffuse environments”, SSIGGRAPH 1986
Kajiya, James T."The rendering equation”. Conference on Computer graphics and interactive techniques 1986



1986: The Rendering Equation

incoming radiance at x
from direction w;

L.(x,w,, A, t) =j fi(x, w;, wy, A, t)L;(x, w;, A, t)(w; - n)dw;
Q _ !

bidirectiona/reflectance surface normal
distribution function
(BRDF)




-
-
-
-
-
-
-
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1965: The BRDF
dL, (w,)

fr(wy, wr) = Li(w;) (w; - n) dw;

* Positivity: f.(w;, w,-) > 0
* Reciprocity: f-(w;, wy) = fr (@, w;)

« Energy conservation:
va)i;f ﬁ-((l)i,a)r)((l)r ) n)dwr S 1
Q

mirror

specular

diffuse

Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface". Applied Optics



2000s: Lightfield camera arrays

« Use many synchronized cameras to capture a scene from
many angle simlutaneously

 Film use: The Matrix (1999)

/3



2020: Neural Radiance Fields

* Input: Image collection

 Learning: mapping coordinates (x,y,z)
to color and occupancy

« Qutput: rendering from novel
viewpoints
Input Images Optimize NeRF

T AW AR R RS
L ANPGELTES

e ol W o S Ol A ] - n
RN NS v & B -
DG oA RS & AR S
X TR TR L. — P ﬁﬁ; "
B8 PG ED T Ry W o
RGN &S &g 7 éT ™ =
L EEEEE T L s . Pl A

B T T K &

Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis.”, ECCV 2020 74



NeRF now(-ish)

« Improvements in generalisation, speed, quality, etc.
* Dynamic scenes remain difficult - triangulation is ambiguous

Li, Zhengqi, et al. "Dynibar: Neural dynamic image-based rendering." CVPR. 2023 (Best Paper Honourable Mention) 75



Gaussian Splatting

* |[ntuition: ray-casting through every
nixel is wasteful (mostly empty space)

« Represent the scene as a collection of
noints with size: 3D Gaussians (mean &
covariance)

* Projecting 3D Gaussians to the image
plane results in approx. 2D Gaussians
(Zwicker et al.,2002)

« Advantage: only spend time/memory
on the surface of objects

Kerbl, B., Kopanas, G., Leimkuhler, T., & Drettakis, G. (2023). 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics (ToG) ¢,



Summary

« Computer vision is usually harder than we think.
* There are many open problems.

* “just throw a big network at a lot of data” usually does not
work - we need to be smart about it.

 Current trend: old ideas can improve things quite a bit.
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