
Image Transformations
and Enhancement

Computer Vision - Lecture 02

1

Further reading

• Some slides adapted from Alyosha
Efros, Derek Hoiem, Svetlana Lazebnik

• Almost all examples on the slides
today come from python code

2

By Scan, Fair use,
https://en.wikipedia.org/w/index.php?curid=11751438

https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://slazebni.cs.illinois.edu/fall22/

Code

https://colab.research.google.com/

3

https://colab.research.google.com/

4

Using Colab

• Cells separate code
blocks.

• Cells can be run with the
play button.

• A notebook is stateful!
Things might use outputs
from previous cells.

• When you change things,
make sure to run all
necessary cells.

5

Using the code

• Can be helpful to understand the connection between the
ideas and their implementation.

• Very useful for the practicals (and also for classes).

• The exam will not ask for implementation details.

6

Overview

• Images as functions

• Subsampling & upsampling

• Point-wise transformations

• Geometric transformations

• Image filtering

7

Why is Computer Vision hard?

What we see What a computer sees

import cv2
image = cv2.imread('02/image.jpg')
print(image)

[[[82 100 129]
 [83 101 130]
 [84 102 133]
 ...
 [23 34 54]
 [20 34 57]
 [17 33 56]]
 ...

8

Digital Images

red channel

green channel

blue channel

9

Images as Pixels

print(image.shape)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print(gray.shape)
print(gray)

(854, 1280, 3)

(854, 1280)

[[107 108 109 ... 39 39 38]
 [112 113 114 ... 70 67 64]
 [117 118 120 ... 174 168 164]
 ...
 [184 183 182 ... 25 26 26]
 [184 183 182 ... 25 26 26]
 [184 183 182 ... 25 25 26]]

height, width, channels (B, G, R)

grayscale images have only one channel

2D array of pixel intensities

top left pixel

bottom right pixel

10

Images as Functions

• We can interpret an image as
samples from a continuous
2D function 𝑓(𝑥, 𝑦)

• 𝑓 maps from 2D coordinates
to image intensities

• The functional
representation is very useful
to express operations on
images (e.g. filtering,
transformations, etc.)

11

Sampling and reconstruction
Sampling: recording the function’s
values at a discrete set of
locations

Reconstruction: converting a sampled
representation back into a continuous function
by “guessing” what happens between the
samples

Source: S. Marschner (via A. Efros)
12

Sampling and reconstruction

• Simple example: a sine wave

13

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost

14

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost

• Surprising result: indistinguishable from lower frequencies

15

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost

• Surprising result: indistinguishable from lower frequencies
(or even higher frequencies)

16

Source: S. Marschner (via A. Efros)

Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost

• Surprising result: indistinguishable from lower frequencies
(or even higher frequencies)

• Aliasing: signal “traveling in disguise” as other frequencies

17

Source: S. Marschner (via A. Efros)

Nyquist-Shannon sampling theorem

When sampling a signal at discrete intervals, the sampling
frequency must be at least twice the maximum frequency of
the input signal to allow us to reconstruct the original
perfectly from the sampled version

bad

good

https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

18

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

Aliasing “in the wild”

Source

Source

Source

Disintegrating textures Moiré patterns, false color

19

https://www.focuscamera.com/wavelength/what-is-the-moire-effect-in-photography-how-to-avoid-it/
https://www.japanistry.com/moire-false-colour-anti-aliasing-filters/
https://matthews.sites.wfu.edu/misc/DigPhotog/alias/

Anti-aliasing

What are possible solutions?

• Sample more often (if you can)

• Before sampling: get rid of all frequencies that are greater than
half the new sampling frequency

• Will lose information, but still better than aliasing

• How to get rid of high frequencies?
• Apply a smoothing or low-pass filter

20

Subsampling Images

• Goal: reduce the resolution of an image by a factor of 2𝑛

• Idea: let’s delete every pixel with coordinates that are not a
multiple of 2𝑛

• Aliasing problems in high-frequency regions!

factor 4 factor 8 factor 16

21

Subsampling Images
Idea: remove high-frequency details first (by blurring [later])

factor 4 factor 8 factor 16

b
e

fo
re

a
ft

e
r

22

Upsampling Images

How to increase the resolution by a factor of 2

upsample

how do we
determine the
colours of the
missing pixels?

Interpolation!

23

Interpolation

• We will express the image as a
function 𝑓(𝑥, 𝑦) given at integer
coordinates

• Upsampling by 2 means finding
values for 𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) with
𝛿𝑥, 𝛿𝑦 ∈ {0,

1

2
}

• Define some shorthands:
A ≔ 𝑓 0,0 B ≔ 𝑓 1,0
C ≔ 𝑓 0,1 D ≔ 𝑓 1,1

• Here: math will be with
grayscale images only. In
practice: process each channel
separately

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(
1

2
, 0)

(
1

2
,
1

2
)(0,

1

2
)

24

Bilinear Interpolation

• Intuition: new values
should lie between existing
ones:

𝑓
1

2
, 0 =

𝑓(0,0) + 𝑓(1,0)

2

• After filling in the middles
between known points,
centres between 4 pixels
can be filled. Well defined:

𝐴 𝐵

𝐶 𝐷

𝐴 + 𝐵

2

𝐶 + 𝐷

2

𝐴 + 𝐶

2

𝐵 + 𝐷

2

𝐴 + 𝐵
2 +

𝐶 + 𝐷
2

2
=

𝐴 + 𝐵 + 𝐶 + 𝐷

4
=

𝐴 + 𝐶
2 +

𝐵 + 𝐷
2

2 25

Generalized Bilinear Interpolation

http://en.wikipedia.org/wiki
/Bilinear_interpolation

C D

A B

𝑓 𝑥, 𝑦 = 𝑤11𝐴 + 𝑤21𝐵 +𝑤12 𝐶 + 𝑤22𝐷

𝑤11 =
𝑥2 − 𝑥 𝑦2 − 𝑦

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑤12 =
𝑥2 − 𝑥 𝑦 − 𝑦1

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑤21 =
𝑥 − 𝑥1 𝑦2 − 𝑦

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑤22 =
(𝑥 − 𝑥1) 𝑦 − 𝑦1

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑥1, 𝑦1 𝑥2, 𝑦1

𝑥1, 𝑦2 𝑥2, 𝑦2

Intuition:

Formalized:

adapted from from S. Lazebnik

26

http://en.wikipedia.org/wiki/Bilinear_interpolation
http://en.wikipedia.org/wiki/Bilinear_interpolation

Other Interpolation Schemes

Source: Wikipedia

1D Interpolation

2D Interpolation

27

https://en.wikipedia.org/wiki/Bicubic_interpolation

Useful Interpolation Properties

• Nearest Neighbour Interpolation
• Does only use values already in the

data

• (Bi-) Linear Interpolation
• Does not create samples outside of

the range of interpolants

• (Bi-) Cubic Interpolation
• Is smooth (differentiable)

everywhere

Image source
28

https://www.orcina.com/webhelp/OrcaFlex/Content/html/Interpolationmethods.htm

Image Transformations

• Images as functions can help formulating resampling.

• The functional representation allows us to do other
transformations too!

• A transformation creates a new image 𝑓′ from 𝑓.

• Point-wise transformation: 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦)

• Geometric transformation: 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦)

• Image filtering: 𝑓′ 𝑥, 𝑦 = 𝐹 𝑁(𝑥, 𝑦) , for a neighbourhood
𝑁 𝑥, 𝑦 = 𝑓 𝑢, 𝑣 “ 𝑢, 𝑣 is a neighbour of (𝑥, 𝑦)”}

29

Point-Wise Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦)

• Changes the range of the image

• Negative: 𝑓′ = 1 − 𝑓

30

Point-Wise Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦)

• Changes the range of the image

• Negative: 𝑓′ = 1 − 𝑓

• Contrast: 𝑓′ = 𝑎𝑓 + 𝑏

31

Point-Wise Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦)

• Changes the range of the image

• Negative: 𝑓′ = 1 − 𝑓

• Contrast: 𝑓′ = 𝑎𝑓 + 𝑏

• Gamma correction:
𝑓′ = 𝑓𝛾

32

Geometric Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦)

• Changes the domain of the image

• Translation:
𝑇 𝑥, 𝑦 = (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦)

33

Geometric Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦)

• Changes the domain of the image

• Translation:
𝑇 𝑥, 𝑦 = (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦)

• Scaling: 𝑇 𝑥, 𝑦 = (𝑠𝑥, 𝑠𝑦)

34

Geometric Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦)

• Changes the domain of the image

• Translation:
𝑇 𝑥, 𝑦 = (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦)

• Scaling: 𝑇 𝑥, 𝑦 = (𝑠𝑥, 𝑠𝑦)

• Rotation:

𝑇 𝑥, 𝑦 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦

35

General Geometric Transformations

• We can express these (and more) geometric transformations
in a unified manner

• Homogeneous coordinates:
𝑥
𝑦 →

𝑥
𝑦
1

• Affine transformations:

𝑇 𝑥, 𝑦 = 𝐴
𝑥
𝑦
1

=
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑥
𝑦
1

36

Affine Transformation Examples

• Translation: 𝑇 𝑥, 𝑦 = 𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦 =
1 0 𝛿𝑥

0 1 𝛿𝑦

𝑥
𝑦
1

• Scaling: 𝑇 𝑥, 𝑦 = 𝑠𝑥, 𝑠𝑦 =
𝑠 0 0
0 𝑠 0

𝑥
𝑦
1

• Rotation: 𝑇 𝑥, 𝑦 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

𝑥
𝑦
1

37

Affine Transformation Examples

• Horizontal Shearing:

𝑇 𝑥, 𝑦 =
1 𝑚 0
0 1 0

𝑥
𝑦
1

38

• Vertical Shearing:

𝑇 𝑥, 𝑦 =
1 0 0
𝑚 1 0

𝑥
𝑦
1

Combining Transformations

• How can we chain transformations? E.g. rotation and
translation.

• Same idea: Homogeneous coordinates.

• Add a row to the matrix to make it square.

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
→

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

39

Affine Transformation Matrix

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

𝑥
𝑦
1

=
𝑎11𝑥 + 𝑎12𝑦 + 𝑎13

𝑎21𝑥 + 𝑎22𝑦 + 𝑎23

1

We can essentially ignore the additional row and 1. (for now!)

An affine transformation preserves:

• Collinearity: three or more points which lie on the same line (called collinear
points) continue to be collinear after the transformation.

• Parallelism: two or more lines which are parallel, continue to be parallel
after the transformation.

• Convexity of sets: a convex set continues to be convex after the
transformation.

40

Combining Transformations

• Affine transformations in 2D are 3x3 matrices with 6
variables.

• It is a group under composition of functions:

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

0 0 1

=
𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

0 0 1

41

Combining Transformations

• Simply multiply transformation matrices.

• Order matters! (Applied right-to-left because we multiply points right)

Example – Rotation & Translation:

R =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
 𝑇 =

1 0 𝛿𝑥

0 1 𝛿𝑦

0 0 1

𝑅𝑇 =

cos 𝜃 − sin 𝜃 𝛿𝑥 cos 𝜃 − 𝛿ysin 𝜃

sin 𝜃 cos 𝜃 𝛿𝑥sin 𝜃 + 𝛿𝑦 cos 𝜃

0 0 1

≠ 𝑇𝑅 =
cos 𝜃 − sin 𝜃 𝛿𝑥

sin 𝜃 cos 𝜃 𝛿𝑦

0 0 1

42

Rotation and Translation

Animating rotation, fixed x-translation

43𝑇𝑅: rotate then translate 𝑅𝑇: translate then rotate

How did I create these animations?

• Transformations define a forward warp.

• 𝑇 𝑥, 𝑦 = 𝑥′, 𝑦′ maps source pixels to target locations

• A naïve implementation takes every source pixel and draws it
at its new location.

• Problem: holes!

44

Scaling
2 0 0
0 2 0
0 0 1

Backward Warps

• Iterating over source pixels and drawing them at the target
location is called a forward warp.

• Often better: for every target-image pixel: look up where it
comes from – this is a backwards warp.

• We can compute backwards warps with a matrix inverse:

𝑇−1 𝑥, 𝑦 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

−1 𝑥
𝑦
1

• If the source location is between pixels: use interpolation!

45

Image Filtering

Idea of filtering: 𝑓′ 𝑥, 𝑦 = 𝐹 𝑁(𝑥, 𝑦)
for a set 𝑁 𝑥, 𝑦 = (𝑢, 𝑣) “ 𝑢, 𝑣 is neighbour of
(𝑥, 𝑦)”}

• We replace each point with some
computation on its neighbourhood.

• Neighbours often in a square: 𝑥 − 𝑢 ≤ 𝑛 and
𝑦 − 𝑣 ≤ 𝑛. (total size is 2𝑛 + 1 2 pixels)

• 𝐹 is called a filter.

• Usually, the same filter is applied everywhere.

46

𝑁

image

𝑥, 𝑦

Averaging

• Earlier we removed high frequency details by blurring.

• The easiest way to blur an image is by averaging a
neighbourhood.

• Simple blur: 𝐹 𝑁 =
1

|𝑁|
σ 𝑢,𝑣 ∈𝑁 𝑓(𝑢, 𝑣)

47
5x5 17x17 33x33

Gaussian Blur

• Averaging gives the same weight to every pixel
in the neighbourhood.

• It is better to discount pixels when they are
further away.

𝐹 𝑁 =
1

σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢,𝑣)
 σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢, 𝑣)𝑓(𝑢, 𝑣)

Gaussian Blur: 𝑤 𝑢, 𝑣 = 𝑒
−

𝑥−𝑢 2+ 𝑦−𝑣 2

2𝜎2

48

𝑁

image

𝑥, 𝑦

weight

normalization

Averaging vs. Gaussian Blur

49

a
ve

ra
g

in
g

G
a

u
ss

ia
n

 B
lu

r

Discrete Convolution

Given discrete functions 𝑓: ℤ ↦ ℝ and 𝑔: ℤ ↦ ℝ,
their convolution is defined as

50

ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] = ෍

𝑢=−∞

+∞

𝑓 𝑢 𝑔[𝑥 − 𝑢]

Discrete Convolution

If 𝑓 has finite support in the set ℳ = 0, … , 𝑀 − 1 ,
i.e., 𝑓 𝑚 = 0, ∀ 𝑚 ∈ ℤ\ℳ, then:

51

ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] = ෍

𝑢=0

𝑀−1

𝑓 𝑢 𝑔[𝑥 − 𝑢 +
𝑀 − 1

2
]

𝑓: Kernel or filter

𝑔: Input function

Example

1 2 0 1 1 3 0 2

52

1 0 1

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5] 𝑔[6] 𝑔[7]

𝑓[0] 𝑓[1] 𝑓[2]

ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] = ෍

𝑢=0

𝑀−1

𝑓 𝑢 𝑔[𝑥 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

∗

Example

1 2 0 1 1 3 0 2

53

1 0 1 ℎ 1 = 1 ∙ 1 + 0 ∙ 2 + 1 ∙ 0 = 1

1

ℎ[1] = 𝑓 ∗ 𝑔 [1] = ෍

𝑢=0

2

𝑓 𝑢 𝑔[1 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

Example

1 2 0 1 1 3 0 2

54

1 0 1 ℎ 2 = 1 ∙ 2 + 0 ∙ 0 + 1 ∙ 1 = 3

1 3

ℎ[2] = 𝑓 ∗ 𝑔 [2] = ෍

𝑢=0

2

𝑓 𝑢 𝑔[2 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

Example

1 2 0 1 1 3 0 2

55

1 0 1

1 3 1

ℎ 3 = 1 ∙ 0 + 0 ∙ 1 + 1 ∙ 1 = 1

ℎ[3] = 𝑓 ∗ 𝑔 [3] = ෍

𝑢=0

2

𝑓 𝑢 𝑔[3 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

Example

1 2 0 1 1 3 0 2

56

1 0 1

1 3 1 4

ℎ 4 = 1 ∙ 1 + 0 ∙ 1 + 1 ∙ 3 = 4

ℎ[4] = 𝑓 ∗ 𝑔 [4] = ෍

𝑢=0

2

𝑓 𝑢 𝑔[4 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

Example

1 2 0 1 1 3 0 2

57

1 0 1

1 3 1 4 1

ℎ 5 = 1 ∙ 1 + 0 ∙ 3 + 1 ∙ 0 = 1

ℎ[5] = 𝑓 ∗ 𝑔 [5] = ෍

𝑢=0

2

𝑓 𝑢 𝑔[5 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

Example

1 2 0 1 1 3 0 2

58

1 0 1

1 3 1 4 1 5

ℎ 6 = 1 ∙ 3 + 0 ∙ 0 + 1 ∙ 2 = 5

ℎ[6] = 𝑓 ∗ 𝑔 [6] = ෍

𝑢=0

2

𝑓 𝑢 𝑔[6 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

Example

1 2 0 1 1 3 0 2

59

1 0 1

2 1 3 1 4 1 5 0

Boundary case: zero-padding

0 0

ℎ 0 = 1 ∙ 0 + 0 ∙ 1 + 1 ∙ 2 = 2

ℎ 7 = 1 ∙ 0 + 0 ∙ 2 + 1 ∙ 0 = 0

ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] = ෍

𝑢=0

2

𝑓 𝑢 𝑔[𝑥 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

Multidimensional Discrete Convolution

If 𝑔: ℤ × ℤ ↦ ℝ and 𝑓: 0, … , 𝑀 − 1 × {0, … , 𝑁 − 1} ↦ ℝ
are discrete functions of two variables, then:

60

ℎ[𝑥, 𝑦] = 𝑓 ∗ 𝑔 [𝑥, 𝑦] = ෍

𝑢=0

𝑀−1

෍

𝑣=0

𝑁−1

𝑓 𝑢, 𝑣 𝑔[𝑥 − 𝑢 +
𝑀 − 1

2
, 𝑦 − 𝑣 +

𝑀 − 1

2
]

Example

We can think of convolution as performing an image
operation defined by the filter

61

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗

𝑔 = 𝑓 ∗ 𝑔 =

𝑓 =
Mean filter

(Smoothing)

Median Filtering

• We can apply more complex functions than simply weighted
averages.

• Median Filtering: 𝐹 𝑁 = median 𝑢,𝑣 ∈𝑁 (𝑓(𝑢, 𝑣))

• Median: sort all elements and take “the middle one”

• Good for outlier removal

62input: 20% corrupted pixels 3x3 median filtering 17x17 median filtering

Bilateral Filter

• Gaussian Blur blurs everything equally. Sometimes we want to
preserve edges/boundaries.

• Use two weights: 𝑤 𝑢, 𝑣 = 𝑤𝑔 𝑢, 𝑣 𝑤𝑠(𝑢, 𝑣)

𝑤𝑔 𝑢, 𝑣 = 𝑒
−

𝑥−𝑢 2+ 𝑦−𝑣 2

2𝜎𝑔
2

 (like Gaussian Blur)

𝑤𝑠 𝑢, 𝑣 = 𝑒
−

𝑓 𝑢,𝑣 −𝑓 𝑥,𝑦
2

2𝜎𝑠
2

 (weigh similar pixels higher)

• Bilateral Filter: 𝐹 𝑁 =
1

σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢,𝑣)
 σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢, 𝑣)𝑓(𝑢, 𝑣)

63

Bilateral Filter

64

Bilateral 35x35 Gaussian Blur 33x33

	Slide 1: Image Transformations and Enhancement
	Slide 2: Further reading
	Slide 3: Code
	Slide 4
	Slide 5: Using Colab
	Slide 6: Using the code
	Slide 7: Overview
	Slide 8: Why is Computer Vision hard?
	Slide 9: Digital Images
	Slide 10: Images as Pixels
	Slide 11: Images as Functions
	Slide 12: Sampling and reconstruction
	Slide 13: Sampling and reconstruction
	Slide 14: Sampling and reconstruction
	Slide 15: Sampling and reconstruction
	Slide 16: Sampling and reconstruction
	Slide 17: Sampling and reconstruction
	Slide 18: Nyquist-Shannon sampling theorem
	Slide 19: Aliasing “in the wild”
	Slide 20: Anti-aliasing
	Slide 21: Subsampling Images
	Slide 22: Subsampling Images
	Slide 23: Upsampling Images
	Slide 24: Interpolation
	Slide 25: Bilinear Interpolation
	Slide 26: Generalized Bilinear Interpolation
	Slide 27: Other Interpolation Schemes
	Slide 28: Useful Interpolation Properties
	Slide 29: Image Transformations
	Slide 30: Point-Wise Transformations
	Slide 31: Point-Wise Transformations
	Slide 32: Point-Wise Transformations
	Slide 33: Geometric Transformations
	Slide 34: Geometric Transformations
	Slide 35: Geometric Transformations
	Slide 36: General Geometric Transformations
	Slide 37: Affine Transformation Examples
	Slide 38: Affine Transformation Examples
	Slide 39: Combining Transformations
	Slide 40: Affine Transformation Matrix
	Slide 41: Combining Transformations
	Slide 42: Combining Transformations
	Slide 43: Rotation and Translation
	Slide 44: How did I create these animations?
	Slide 45: Backward Warps
	Slide 46: Image Filtering
	Slide 47: Averaging
	Slide 48: Gaussian Blur
	Slide 49: Averaging vs. Gaussian Blur
	Slide 50: Discrete Convolution
	Slide 51: Discrete Convolution
	Slide 52: Example
	Slide 53: Example
	Slide 54: Example
	Slide 55: Example
	Slide 56: Example
	Slide 57: Example
	Slide 58: Example
	Slide 59: Example
	Slide 60: Multidimensional Discrete Convolution
	Slide 61: Example
	Slide 62: Median Filtering
	Slide 63: Bilateral Filter
	Slide 64: Bilateral Filter

