
Image Transformations 
and Enhancement

Computer Vision - Lecture 02
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Further reading

• Some slides adapted from Alyosha 
Efros, Derek Hoiem, Svetlana Lazebnik

• Almost all examples on the slides 
today come from python code
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By Scan, Fair use, 
https://en.wikipedia.org/w/index.php?curid=11751438

https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://slazebni.cs.illinois.edu/fall22/


Code

https://colab.research.google.com/
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https://colab.research.google.com/
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Using Colab

• Cells separate code 
blocks. 

• Cells can be run with the 
play button.

• A notebook is stateful! 
Things might use outputs 
from previous cells.

• When you change things, 
make sure to run all 
necessary cells.
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Using the code

• Can be helpful to understand the connection between the 
ideas and their implementation.

• Very useful for the practicals (and also for classes).

• The exam will not ask for implementation details.
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Overview 

• Images as functions

• Subsampling & upsampling

• Point-wise transformations

• Geometric transformations

• Image filtering
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Why is Computer Vision hard?

What we see What a computer sees

import cv2
image = cv2.imread('02/image.jpg')
print(image)

[[[ 82 100 129]
  [ 83 101 130]
  [ 84 102 133]
  ...
  [ 23  34  54]
  [ 20  34  57]
  [ 17  33  56]]
 ...
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Digital Images

red channel

green channel

blue channel
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Images as Pixels

print(image.shape)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
print(gray.shape)
print(gray)

(854, 1280, 3)

(854, 1280)

[[107 108 109 ...  39  39  38]
 [112 113 114 ...  70  67  64]
 [117 118 120 ... 174 168 164]
 ...
 [184 183 182 ...  25  26  26]
 [184 183 182 ...  25  26  26]
 [184 183 182 ...  25  25  26]]

height, width, channels (B, G, R)

grayscale images have only one channel

2D array of pixel intensities

top left pixel

bottom right pixel
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Images as Functions

• We can interpret an image as 
samples from a continuous 
2D function 𝑓(𝑥, 𝑦)

• 𝑓 maps from 2D coordinates 
to image intensities

• The functional 
representation is very useful 
to express operations on 
images (e.g. filtering, 
transformations, etc.)
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Sampling and reconstruction
Sampling: recording the function’s 
values at a discrete set of 
locations

Reconstruction: converting a sampled 
representation back into a continuous function 
by “guessing” what happens between the 
samples 

Source: S. Marschner (via A. Efros)
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Sampling and reconstruction

• Simple example: a sine wave
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Source: S. Marschner (via A. Efros)



Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost
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Source: S. Marschner (via A. Efros)



Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost

• Surprising result: indistinguishable from lower frequencies
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Source: S. Marschner (via A. Efros)



Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost

• Surprising result: indistinguishable from lower frequencies
(or even higher frequencies)
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Source: S. Marschner (via A. Efros)



Sampling and reconstruction

• Simple example: a sine wave

• What if we “missed” things between the samples?
• Unsurprising result: information is lost

• Surprising result: indistinguishable from lower frequencies
(or even higher frequencies)

• Aliasing: signal “traveling in disguise” as other frequencies
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Source: S. Marschner (via A. Efros)



Nyquist-Shannon sampling theorem

When sampling a signal at discrete intervals, the sampling 
frequency must be at least twice the maximum frequency of 
the input signal to allow us to reconstruct the original 
perfectly from the sampled version

bad

good

https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
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https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem


Aliasing “in the wild”

Source

Source

Source

Disintegrating textures Moiré patterns, false color
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https://www.focuscamera.com/wavelength/what-is-the-moire-effect-in-photography-how-to-avoid-it/
https://www.japanistry.com/moire-false-colour-anti-aliasing-filters/
https://matthews.sites.wfu.edu/misc/DigPhotog/alias/


Anti-aliasing

What are possible solutions?

• Sample more often (if you can)

• Before sampling: get rid of all frequencies that are greater than 
half the new sampling frequency

• Will lose information, but still better than aliasing

• How to get rid of high frequencies?
• Apply a smoothing or low-pass filter
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Subsampling Images

• Goal: reduce the resolution of an image by a factor of 2𝑛

• Idea: let’s delete every pixel with coordinates that are not a 
multiple of 2𝑛

• Aliasing problems in high-frequency regions!

factor 4 factor 8 factor 16
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Subsampling Images
Idea: remove high-frequency details first (by blurring [later])

factor 4 factor 8 factor 16

b
e
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a
ft

e
r
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Upsampling Images

How to increase the resolution by a factor of 2

upsample

how do we 
determine the 
colours of the 
missing pixels?

Interpolation!
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Interpolation

• We will express the image as a 
function 𝑓(𝑥, 𝑦) given at integer 
coordinates 

• Upsampling by 2 means finding 
values for 𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) with 
𝛿𝑥, 𝛿𝑦 ∈ {0,

1

2
}

• Define some shorthands:
A ≔ 𝑓 0,0  B ≔ 𝑓 1,0  
C ≔ 𝑓 0,1  D ≔ 𝑓 1,1

• Here: math will be with 
grayscale images only. In 
practice: process each channel 
separately

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(
1

2
, 0)

(
1

2
,
1

2
)(0,

1

2
)
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Bilinear Interpolation

• Intuition: new values 
should lie between existing 
ones:

𝑓
1

2
, 0 =

𝑓(0,0) + 𝑓(1,0)

2

• After filling in the middles 
between known points, 
centres between 4 pixels 
can be filled. Well defined:

𝐴 𝐵

𝐶 𝐷

𝐴 + 𝐵

2

𝐶 + 𝐷

2

𝐴 + 𝐶

2

𝐵 + 𝐷

2

𝐴 + 𝐵
2 +

𝐶 + 𝐷
2

2
=

𝐴 + 𝐵 + 𝐶 + 𝐷

4
=

𝐴 + 𝐶
2 +

𝐵 + 𝐷
2
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Generalized Bilinear Interpolation 

http://en.wikipedia.org/wiki
/Bilinear_interpolation

C D

A B

𝑓 𝑥, 𝑦 = 𝑤11𝐴 + 𝑤21𝐵 +𝑤12 𝐶 + 𝑤22𝐷

𝑤11 =
𝑥2 − 𝑥 𝑦2 − 𝑦

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑤12 =
𝑥2 − 𝑥 𝑦 − 𝑦1

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑤21 =
𝑥 − 𝑥1 𝑦2 − 𝑦

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑤22 =
(𝑥 − 𝑥1) 𝑦 − 𝑦1

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑥1, 𝑦1 𝑥2, 𝑦1

𝑥1, 𝑦2 𝑥2, 𝑦2

Intuition:

Formalized:

adapted from from S. Lazebnik
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http://en.wikipedia.org/wiki/Bilinear_interpolation
http://en.wikipedia.org/wiki/Bilinear_interpolation


Other Interpolation Schemes

Source: Wikipedia

1D Interpolation

2D Interpolation
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https://en.wikipedia.org/wiki/Bicubic_interpolation


Useful Interpolation Properties

• Nearest Neighbour Interpolation
• Does only use values already in the 

data

• (Bi-) Linear Interpolation
• Does not create samples outside of 

the range of interpolants 

• (Bi-) Cubic Interpolation
• Is smooth (differentiable) 

everywhere

Image source
28

https://www.orcina.com/webhelp/OrcaFlex/Content/html/Interpolationmethods.htm


Image Transformations

• Images as functions can help formulating resampling.

• The functional representation allows us to do other 
transformations too!

• A transformation creates a new image 𝑓′ from 𝑓.

• Point-wise transformation: 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦 ) 

• Geometric transformation: 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦 )

• Image filtering: 𝑓′ 𝑥, 𝑦 = 𝐹 𝑁(𝑥, 𝑦) , for a neighbourhood 
𝑁 𝑥, 𝑦 = 𝑓 𝑢, 𝑣  “ 𝑢, 𝑣  is a neighbour of (𝑥, 𝑦)”} 
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Point-Wise Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦 )

• Changes the range of the image

• Negative: 𝑓′ = 1 − 𝑓

30



Point-Wise Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦 )

• Changes the range of the image

• Negative: 𝑓′ = 1 − 𝑓

• Contrast: 𝑓′ = 𝑎𝑓 + 𝑏
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Point-Wise Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑡(𝑓 𝑥, 𝑦 )

• Changes the range of the image

• Negative: 𝑓′ = 1 − 𝑓

• Contrast: 𝑓′ = 𝑎𝑓 + 𝑏

• Gamma correction: 
𝑓′ = 𝑓𝛾
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Geometric Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦 )

• Changes the domain of the image

• Translation: 
𝑇 𝑥, 𝑦 = (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦)
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Geometric Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦 )

• Changes the domain of the image

• Translation: 
𝑇 𝑥, 𝑦 = (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦)

• Scaling: 𝑇 𝑥, 𝑦 = (𝑠𝑥, 𝑠𝑦)
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Geometric Transformations

• 𝑓′ 𝑥, 𝑦 = 𝑓(𝑇 𝑥, 𝑦 )

• Changes the domain of the image

• Translation: 
𝑇 𝑥, 𝑦 = (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦)

• Scaling: 𝑇 𝑥, 𝑦 = (𝑠𝑥, 𝑠𝑦)

• Rotation: 

𝑇 𝑥, 𝑦 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦
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General Geometric Transformations

• We can express these (and more) geometric transformations 
in a unified manner

• Homogeneous coordinates: 
𝑥
𝑦 →

𝑥
𝑦
1

• Affine transformations:

𝑇 𝑥, 𝑦 = 𝐴
𝑥
𝑦
1

=
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑥
𝑦
1
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Affine Transformation Examples

• Translation: 𝑇 𝑥, 𝑦 = 𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦 =
1 0 𝛿𝑥

0 1 𝛿𝑦

𝑥
𝑦
1

 

• Scaling: 𝑇 𝑥, 𝑦 = 𝑠𝑥, 𝑠𝑦 =
𝑠 0 0
0 𝑠 0

𝑥
𝑦
1

• Rotation: 𝑇 𝑥, 𝑦 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

𝑥
𝑦
1
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Affine Transformation Examples

•  Horizontal Shearing: 

𝑇 𝑥, 𝑦 =
1 𝑚 0
0 1 0

𝑥
𝑦
1

 

38

• Vertical Shearing: 

𝑇 𝑥, 𝑦 =
1 0 0
𝑚 1 0

𝑥
𝑦
1

 



Combining Transformations

• How can we chain transformations? E.g. rotation and 
translation.

• Same idea: Homogeneous coordinates.

• Add a row to the matrix to make it square.

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
→

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1
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Affine Transformation Matrix 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

𝑥
𝑦
1

=
𝑎11𝑥 + 𝑎12𝑦 + 𝑎13

𝑎21𝑥 + 𝑎22𝑦 + 𝑎23

1

We can essentially ignore the additional row and 1. (for now!)

An affine transformation preserves: 

• Collinearity: three or more points which lie on the same line (called collinear 
points) continue to be collinear after the transformation.

• Parallelism: two or more lines which are parallel, continue to be parallel 
after the transformation.

• Convexity of sets: a convex set continues to be convex after the 
transformation.
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Combining Transformations

• Affine transformations in 2D are 3x3 matrices with 6 
variables.

• It is a group under composition of functions:

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

0 0 1

=
𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

0 0 1
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Combining Transformations

• Simply multiply transformation matrices.

• Order matters! (Applied right-to-left because we multiply points right)

Example – Rotation & Translation: 

R =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
 𝑇 =

1 0 𝛿𝑥

0 1 𝛿𝑦

0 0 1

𝑅𝑇 =

cos 𝜃 − sin 𝜃 𝛿𝑥 cos 𝜃 − 𝛿ysin 𝜃

sin 𝜃 cos 𝜃 𝛿𝑥sin 𝜃 + 𝛿𝑦 cos 𝜃

0 0 1

≠ 𝑇𝑅 =
cos 𝜃 − sin 𝜃 𝛿𝑥

sin 𝜃 cos 𝜃 𝛿𝑦

0 0 1
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Rotation and Translation

Animating rotation, fixed x-translation

43𝑇𝑅: rotate then translate 𝑅𝑇: translate then rotate



How did I create these animations?

• Transformations define a forward warp.

• 𝑇 𝑥, 𝑦 = 𝑥′, 𝑦′  maps source pixels to target locations

• A naïve implementation takes every source pixel and draws it 
at its new location.

• Problem: holes!

44

Scaling
2 0 0
0 2 0
0 0 1



Backward Warps

• Iterating over source pixels and drawing them at the target 
location is called a forward warp.

• Often better: for every target-image pixel: look up where it 
comes from – this is a backwards warp.

• We can compute backwards warps with a matrix inverse: 

𝑇−1 𝑥, 𝑦 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

−1 𝑥
𝑦
1

• If the source location is between pixels: use interpolation!
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Image Filtering

Idea of filtering: 𝑓′ 𝑥, 𝑦 = 𝐹 𝑁(𝑥, 𝑦)  
for a set 𝑁 𝑥, 𝑦 = (𝑢, 𝑣)  “ 𝑢, 𝑣  is neighbour of 
(𝑥, 𝑦)”}

• We replace each point with some 
computation on its neighbourhood.

• Neighbours often in a square: 𝑥 − 𝑢 ≤ 𝑛 and 
𝑦 − 𝑣 ≤ 𝑛. (total size is 2𝑛 + 1 2 pixels)

• 𝐹 is called a filter.

• Usually, the same filter is applied everywhere.

46

𝑁

image

𝑥, 𝑦



Averaging

• Earlier we removed high frequency details by blurring.

• The easiest way to blur an image is by averaging a 
neighbourhood.

• Simple blur: 𝐹 𝑁 =
1

|𝑁|
σ 𝑢,𝑣 ∈𝑁 𝑓(𝑢, 𝑣)

47
5x5 17x17 33x33



Gaussian Blur

• Averaging gives the same weight to every pixel 
in the neighbourhood.

• It is better to discount pixels when they are 
further away. 

𝐹 𝑁 =
1

σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢,𝑣)
 σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢, 𝑣)𝑓(𝑢, 𝑣)

Gaussian Blur: 𝑤 𝑢, 𝑣 = 𝑒
−

𝑥−𝑢 2+ 𝑦−𝑣 2

2𝜎2
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𝑁

image

𝑥, 𝑦

weight 

normalization 



Averaging vs. Gaussian Blur
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Discrete Convolution

Given discrete functions 𝑓: ℤ ↦ ℝ and 𝑔: ℤ ↦ ℝ, 
their convolution is defined as

50

ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] =  ෍

𝑢=−∞

+∞

𝑓 𝑢 𝑔[𝑥 − 𝑢]



Discrete Convolution

If 𝑓 has finite support in the set ℳ = 0, … , 𝑀 − 1 , 
i.e., 𝑓 𝑚 = 0, ∀ 𝑚 ∈ ℤ\ℳ, then:
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ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] =  ෍

𝑢=0

𝑀−1

𝑓 𝑢 𝑔[𝑥 − 𝑢 +
𝑀 − 1

2
]

𝑓: Kernel or filter

𝑔: Input function



Example

1 2 0 1 1 3 0 2

52

1 0 1

𝑔[0] 𝑔[1] 𝑔[2] 𝑔[3] 𝑔[4] 𝑔[5] 𝑔[6] 𝑔[7]

𝑓[0] 𝑓[1] 𝑓[2]

ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] =  ෍

𝑢=0

𝑀−1

𝑓 𝑢 𝑔[𝑥 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]

∗



Example

1 2 0 1 1 3 0 2
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1 0 1 ℎ 1 = 1 ∙ 1 + 0 ∙ 2 + 1 ∙ 0 = 1

1

ℎ[1] = 𝑓 ∗ 𝑔 [1] =  ෍

𝑢=0

2

𝑓 𝑢 𝑔[1 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]



Example

1 2 0 1 1 3 0 2
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1 0 1 ℎ 2 = 1 ∙ 2 + 0 ∙ 0 + 1 ∙ 1 = 3

1 3

ℎ[2] = 𝑓 ∗ 𝑔 [2] =  ෍

𝑢=0

2

𝑓 𝑢 𝑔[2 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]



Example

1 2 0 1 1 3 0 2
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1 0 1

1 3 1

ℎ 3 = 1 ∙ 0 + 0 ∙ 1 + 1 ∙ 1 = 1

ℎ[3] = 𝑓 ∗ 𝑔 [3] =  ෍

𝑢=0

2

𝑓 𝑢 𝑔[3 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]



Example

1 2 0 1 1 3 0 2
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1 0 1

1 3 1 4

ℎ 4 = 1 ∙ 1 + 0 ∙ 1 + 1 ∙ 3 = 4

ℎ[4] = 𝑓 ∗ 𝑔 [4] =  ෍

𝑢=0

2

𝑓 𝑢 𝑔[4 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]



Example

1 2 0 1 1 3 0 2

57

1 0 1

1 3 1 4 1

ℎ 5 = 1 ∙ 1 + 0 ∙ 3 + 1 ∙ 0 = 1

ℎ[5] = 𝑓 ∗ 𝑔 [5] =  ෍

𝑢=0

2

𝑓 𝑢 𝑔[5 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]



Example

1 2 0 1 1 3 0 2

58

1 0 1

1 3 1 4 1 5

ℎ 6 = 1 ∙ 3 + 0 ∙ 0 + 1 ∙ 2 = 5

ℎ[6] = 𝑓 ∗ 𝑔 [6] =  ෍

𝑢=0

2

𝑓 𝑢 𝑔[6 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]



Example

1 2 0 1 1 3 0 2
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1 0 1

2 1 3 1 4 1 5 0

Boundary case:  zero-padding 

0 0

ℎ 0 = 1 ∙ 0 + 0 ∙ 1 + 1 ∙ 2 = 2

ℎ 7 = 1 ∙ 0 + 0 ∙ 2 + 1 ∙ 0 = 0

ℎ[𝑥] = 𝑓 ∗ 𝑔 [𝑥] =  ෍

𝑢=0

2

𝑓 𝑢 𝑔[𝑥 − 𝑢 + 1]

𝑀 = 3, 𝑥 ∈ [0,7]



Multidimensional Discrete Convolution

If 𝑔: ℤ × ℤ ↦ ℝ and 𝑓: 0, … , 𝑀 − 1 × {0, … , 𝑁 − 1} ↦ ℝ 
are discrete functions of two variables, then:

60

ℎ[𝑥, 𝑦] = 𝑓 ∗ 𝑔 [𝑥, 𝑦] =  ෍

𝑢=0

𝑀−1

෍

𝑣=0

𝑁−1

𝑓 𝑢, 𝑣 𝑔[𝑥 − 𝑢 +
𝑀 − 1

2
, 𝑦 − 𝑣 +

𝑀 − 1

2
]



Example

We can think of convolution as performing an image 
operation defined by the filter
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Median Filtering

• We can apply more complex functions than simply weighted 
averages.

• Median Filtering: 𝐹 𝑁 = median 𝑢,𝑣 ∈𝑁 (𝑓(𝑢, 𝑣))

• Median: sort all elements and take “the middle one”

• Good for outlier removal

62input: 20% corrupted pixels 3x3 median filtering 17x17 median filtering



Bilateral Filter

• Gaussian Blur blurs everything equally. Sometimes we want to 
preserve edges/boundaries.

• Use two weights: 𝑤 𝑢, 𝑣 = 𝑤𝑔 𝑢, 𝑣 𝑤𝑠(𝑢, 𝑣)

𝑤𝑔 𝑢, 𝑣 = 𝑒
−

𝑥−𝑢 2+ 𝑦−𝑣 2

2𝜎𝑔
2

 (like Gaussian Blur)

𝑤𝑠 𝑢, 𝑣 = 𝑒
−

𝑓 𝑢,𝑣 −𝑓 𝑥,𝑦
2

2𝜎𝑠
2

 (weigh similar pixels higher)

• Bilateral Filter: 𝐹 𝑁 =
1

σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢,𝑣)
 σ 𝑢,𝑣 ∈𝑁 𝑤(𝑢, 𝑣)𝑓(𝑢, 𝑣)
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Bilateral Filter
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