
Image Restoration
Computer Vision – Lecture 04
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Practicals: weeks 3,4,6,7
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Further Reading

• Slides from A Zisserman

• Slides from A Efros

• Slides from A Torralba and A Oliva

• Video from S Seitz: Fourier Transform in 5 minutes: 
The Case of the Splotched Van Gogh, Part 3
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https://www.robots.ox.ac.uk/~az/lectures/ia/lect3.pdf
https://inst.eecs.berkeley.edu/~cs194-26/fa22/
https://www.cs.cmu.edu/~efros/courses/LBMV07/presentations/0208Gist.pdf
https://www.youtube.com/watch?v=JciZYrh36LY


https://www.youtube.com/watch?v=Vxq9yj2pVWk
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Image Restoration

• In contrast to image enhancement, in image restoration the 
degradation is modelled. 

• This enables the effects of the degradation to be (largely) 
removed.

• The objective is to restore a degraded image to its original 
form.
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Typical Degradations
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Optical Blur Motion Blur

Spatial quantization Additive noise

Original



Modelling Degradation

We can model an observed image as:

𝑔 𝑥, 𝑦 =  𝑑 𝑥 − 𝑢, 𝑦 − 𝑣 𝑓 𝑢, 𝑣 𝑑𝑢 𝑑𝑣 + 𝑛(𝑥, 𝑦)

This means the observed image 𝑔 is created from the true 
image 𝑓 through a convolution with 𝑑 and added noise 𝑛.
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𝑓 𝑥, 𝑦𝑔 𝑥, 𝑦 𝑑 𝑥, 𝑦

= ∗ +

𝑛 𝑥, 𝑦



Degradation Model

𝑔 𝑥, 𝑦 =  𝑑 𝑥 − 𝑢, 𝑦 − 𝑣 𝑓 𝑢, 𝑣 𝑑𝑢 𝑑𝑣 + 𝑛(𝑥, 𝑦)

• This is only one way of modelling degradation. Others are 
possible too.

• 𝑑 𝑥, 𝑦  is called the impulse response or point spread function 
of the imaging system.
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Fourier Transforms
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* =

× =

Image

FT(Image) FT(Filter) FT(Filtered image)

Filter Filtered image



Fourier Transforms

• Ignoring additive noise for now.

• Instead of a convolution in image space, we can use 
multiplication in Fourier space.

𝑔 = 𝑑 ∗ 𝑓 →  𝐺 = 𝐷 × 𝐹

𝐺 = 𝐹𝑇 𝑔 , 𝐷 = 𝐹𝑇 𝐷 , 𝐹 = 𝐹𝑇(𝐹)  

• Recover an estimate መ𝑓 of the true image:

መ𝑓 = 𝐹𝑇−1
𝐺

𝐷
= 𝐹𝑇−1

𝐹𝑇(𝑔)

𝐹𝑇(𝑑)
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Filter Inversion
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/ =

Blurred Image

FT(Blurred Image) FT(Filter) FT(deblurred image)

Filter “deblurred” image



What went wrong?

• The deblurred image is almost 
purely noise

• This is because we are dividing 
by small numbers 

• The filter is almost 0 in the high-
frequency regions

• We are amplifying the noise!
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Zoom into 
“deblurred image”

FT(Filter)



The Wiener Filter

• To avoid up-scaling the noise, 
add a second constraint

• Minimise: 𝔼 𝑔 − መ𝑓
2

• The reconstruction should be 
close to the observation
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Norbert Wiener 1894-1964



The Wiener Filter

• In Fourier space we had

𝐺 𝑢, 𝑣 = 𝐷 𝑢, 𝑣 𝐹 𝑢, 𝑣 + 𝑁(𝑢, 𝑣)

• Bad solution (noise amplification):

𝐹 𝑢, 𝑣 =
1

𝐷(𝑢,𝑣)
 𝐺 𝑢, 𝑣

• Wiener Filter:
𝐹 𝑢, 𝑣 = 𝑊(𝑢, 𝑣)𝐺(𝑢, 𝑣)
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The Wiener Filter

𝑊 𝑢, 𝑣 =
𝐷∗ 𝑢, 𝑣

𝐷 𝑢, 𝑣 2𝑆(𝑢, 𝑣) + 𝐾(𝑢, 𝑣)

• 𝑆 𝑢, 𝑣 = 𝔼 𝐹 𝑢, 𝑣 2  is the mean power spectral density of 
the original signal 

• 𝐾 𝑢, 𝑣 = 𝔼 𝑁 𝑢, 𝑣 2  is the mean power spectral density of 
the noise 

• Often: 𝑆 𝑢, 𝑣 = 1 and 𝐾 𝑢, 𝑣  is a small (real) constant.
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complex conjugate



Energy Spectral Density

• Power spectrum: distribution of total energy across 
frequencies.

• This is the magnitude diagram that we have been looking at.
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Energy Spectral Density
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Image from A Torralba and A Oliva

https://www.cs.cmu.edu/~efros/courses/LBMV07/presentations/0208Gist.pdf


Interpretation

We can rewrite the filter as:

𝑊 𝑢, 𝑣 =
1

𝐷(𝑢, 𝑣)

1

1 +
1

𝐷 𝑢, 𝑣 2𝑆𝑁𝑅(𝑓)

 

Intuition: we invert the filter, but scale inversely with the 
expected noise, so that we do not end up amplifying it.
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Filter inversion
Scaling factor

Signal-to-noise ratio



Filter Inversion
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/ =

Blurred Image

FT(Blurred Image) FT(Filter) FT(deblurred image)

Filter “deblurred” image



Deblurring
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* =

Blurred Image

FT(Blurred Image)

FT(Filter)

FT(deblurred image)Wiener Filter

Deblurred Image



Deblurring with a WF

• Boundary artifacts because DFT 
assumes infinitely tiled image.

• In practice, we do not know the 
filter that degraded the image!
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Deblurring with WF
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Blurred Image

Original WF with varying 𝜎



Finding WF Parameters

• It is difficult to find good parameters automatically, but easy 
for humans to see.

• Photoshop has a “strength” slider.

• Bayesian optimization:
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Motion Blur and WFs

Motion blur can be modelled as a 
convolution with a line segment filter.

Algorithm to remove motion blur:

1. Rotate image so that blur is horizontal.

2. Estimate length of blur.

3. Construct line segment filter.

4. Compute and apply Wiener filter.
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line segment filter

Simulated motion blur



Deblur Example

Needs guessing 
the blur that was 
“applied”:

My guess:

• Angle: 3 deg

• Blur: 18px

• Noise: 0.03
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original deblurred



Generative Models

Instead of convolutions we can formulate the degradation as 
a linear operation on pixels.

𝑔 = 𝐴𝑓 + 𝑛

• For an image with 𝑁 pixels, the true image 𝑓 and the 
observed image 𝑔 can be written as 𝑁-vectors.

• 𝐴 is an 𝑁 × 𝑁 matrix.

• 𝑛 is an 𝑁-vector of noise.
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Inverse Problem

We can estimate the true image by optimising a cost function:

መ𝑓 = argmin𝑓 𝑔 − 𝐴𝑓 2 + 𝜆𝑝(𝑓)

• 𝐴𝑓 is a generated image. We minimise the difference to 𝑔.

• 𝑝(𝑓) is a prior or regulariser for the optimisation.

• 𝜆 is a weight, controlling the influence of regularisation.

• For example: 𝑝 𝑓 = ∇𝑓 2     (∇𝑓 is the gradient image)
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Inverse Problem

• 𝐴 can affect each pixel individually and is thus more flexible 
than convolution.

• 𝐴 needs to be manually defined and depends on the 
problem we are solving. 
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Inverse Problem: Super Resolution

If we register multiple images of the same scene (how: later), 
we get multiple samples per pixel!
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Image from A Zisserman



Super Resolution

• Pixels as samples.

• After registration, samples will not align perfectly.

• Can treat it as higher sampling rate (Shannon-Nyquist).

• Higher resolution estimate is possible.

• Construct 𝐴 matrix based on bi-linear interpolation weights.
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Super Resolution

Images from Mars lander: rotating camera – capture the same 
frame multiple times
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Image from A Zisserman



Super Resolution

• 2x super resolution from 25 JPEG images

• JPEG compression artefacts largely removed
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Image from A Zisserman



Mirror Average Example

• A virus has corrupted our image! It was blended with a mirrored 
version (40% old vs. 60% mirrored) and noise was added.

• መ𝑓 = argmin𝑓 𝑔 − 𝐴𝑓 2 + 𝜆𝑝(𝑓)

• How does 𝐴 look like?
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Mirror Matrix

• Construct a matrix 𝑀 that mirrors an image of size 𝐻 × 𝑊.

• We represent the image as a vector containing its pixels.

• How do we flip a row of pixels horizontally?

𝐾 =
0 ⋯ 1
⋮ ⋰ ⋮
1 ⋯ 0

,  𝐾 ∈ ℝ𝑊×𝑊

• Now we can build 𝑀 as a block-diagonal matrix of 𝐾s.
𝑀 = diag𝑖=1

H 𝐾

𝑀 =
𝐾 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐾

,  𝑀 ∈ ℝ𝐻𝑊×𝐻𝑊
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Image Priors

• We only have noisy observations.
 

• Assume a prior (models what a reasonable image is):

• For example smoothness: 𝑝 𝑓 = σ𝑥,𝑦 Δ𝑥 + Δ𝑦  

• ∇𝑓 𝑥, 𝑦 =
Δ𝑥

Δ𝑦
 is the image gradient. Can be computed with 

the Sobel Operator or finite differences.
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Optimisation

• We assume that our image was made with 𝐴 =
4

10
𝐼 +

6

10
𝑀

• Find:  መ𝑓 = argmin𝑓𝐸(𝑓)

• 𝐸 𝑓 = 𝑔 − 𝐴𝑓 2 + 𝜆𝑝(𝑓)

• Can be done with gradient descent on 𝑓:
• Compute the gradient ∇𝐸 of 𝑔 − 𝐴𝑓 2 + 𝜆𝑝(𝑓) wrt. 𝑓

• Update መ𝑓 ← መ𝑓 + 𝜇∇𝐸

36



Optimisation
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Blind Deblurring

• So far, we were guessing the deblurring parameters.

• The inverse formulation is quite flexible! We can also 
optimise a blur filter ℎ.

መ𝑓, ℎ = argmin𝑓,ℎ 𝑔 − 𝐴(ℎ)𝑓 2 + 𝜆𝑓𝑝𝑓(𝑓) + 𝜆ℎ𝑝ℎ(ℎ)
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observed image

generated image

image prior

blur prior



Blind Deblurring

• This is even more under-constrained.

• Needs to rely on good priors or multiple observations.
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Image from A Zisserman
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