Matching Indexing
Search

Computer Vision - Lecture 05



Further reading

e Slides from A Vedaldi

e Slides from S Lazebnik

e Slides from | Johnson and D Fouhey



https://www.robots.ox.ac.uk/~vedaldi/assets/teach/2023/c18-lectures-handout.pdf
https://slazebni.cs.illinois.edu/fall22/
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

So far

 Lectures 02 - 04:
« Various operations a single image

» Usually, we are dealing with more than one image.

- We want to relate one image to another in various ways.
 Points
« Transformations
* Images



What are the three most important
problems in computer vision?

1. Correspondence
2. Correspondence

3. Correspondence

Takeo Kanade (£ Hi#) 4



https://en.wikipedia.org/wiki/Takeo_Kanade

Correspondences

 Given two images of the same scene
* Find corresponding points
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Correspondences

 Simply subtracting the images does not work




Correspondences

Point correspondences estimated by a classic algorithm: SIFT
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Scale Invariant Feature Transform (SIFT)

TITLE CITED BY YEAR

Distinctive image features from scale-invariant keypoints 73590
DG Lowe
International journal of computer vision 60 (2), 91-110

2004

Algorithm overview:

1. Keypoint detection
2. Keypoint description
3. Keypoint matching




Keypoints

« What makes a good keypoint?
 Easy to find in other images!
Intuitions:

» A untextured regions are difficult §=F

to reidentify
 B: good keypoint

- C: stable under viewpoint
changes, but multiple
occurrences

 D: hard to find exact point along
the edge




Image Transformations - again

« We know how to model rotation and translation:

X X
_ (11 Q12 Qg3
Ix,y) =4 (?l]) B (Clz1 a2 a23) (31/)
This corresponds to

 Rotation around the optical axis
 Translation along the optical axis



Optical Axis

« Connects the centre of the
camera with the centre of the
image plane.

« Camera rotation around the
axis rotates the image around
its centre.

» Camera tion along the
axis scales the image around
its centre.

optical axis



Camera Motion vs. Image Motion

 Relating how 3D camera motions change the image is
Important to model viewpoint changes.

« We know: rotation and translation around/along the optical
axis maps to affine 2D transformations.

« What about other viewpoint changes?



Homography

* We will assume that everything
we see lies on a single 3D plane.

* A circle on the 3D plane maps to
an ellipse in the image.

 We will see the mathematical
derivation in lecture 16.
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Image source



https://preview.redd.it/how-are-fake-backlot-building-facades-built-v0-3mpya7e6a6nb1.png?width=1000&format=png&auto=webp&s=bd1f7625b9301d8b817922350f24a1043b21b23c

Homography
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Homography

« We are looking for a transformation
that maps 4 points (from a 3D plane)
In one image to another image.

¢ T(Al) — Bi' Vi € {1,2,3,4}

» All 8 points can be in arbitrary 2D
positions.

« Degrees of freedom: 8
(2 equations for every 2D point pair)

Ay
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Homogeneous Coordinates Il

Geometric interpretation:

« We define an equivalence class:

"

'x ] ( X )
(y) =</1(y),/1€IR% ANAL#*0
. 1 _ \ 1 y

e This embeds R? in R3.

-« We identify the 2D point (x, y)?T
with the class [(x,y, 1)1].

(Ax, 2y, )T

Gy, DT

(0,0,1)T

(0,0,0)T



Homogeneous Coordinates Il

X

 Given a point in homogeneous coordinates (y) we can
Z

compute its 2D counterpart as C:ﬁ) it z+ 0.

 Points with z = 0 have a special meaning: they lie at infinity
(later).

* Now we can describe homographies.



Homography

A homography H is a transformation of 2D homogeneous
coordinates p of the form

X hiy hiz  hys X
T(p) =H (3’) = hy1 hyy hys (3’)
Z h3; hsz, hiz/) ‘\zZ

» Since homogeneous coordinates are equivalence classes of
points, this matrix has only 8 degrees of freedom:

[Hp] = [AHD]
« We often rescale the matrix by 4 = — such that the bottom
right elementis 1. >



Homography

* When applying a homography, mal;e sure renormalise points
y Z),

to treat them as 2D coordinates ( .
xX/z

« A homography is uniquely defined by 4 point-
correspondences if no 3 points lie on the same line.

 Naturally, also images can be transformed with a
homography. (Lecture 02)



A A,

Estimating Homographies H

H[A;] = [Bi]l, Vi€ {1,234} .
« Two equations per correspondence A 43

B = hy1Ay; + hypAy; + hog
PP hy Ay + h3,4,; + hss

B = hi1Ayx; + hi2A,; + hysg
g Ay + h3Ay; + h3z’

Multiplying by the denominator:
Bx,i(h31Ax,i + h34,; + h33) = hy1Ax; + hi2Ay  + hys
By i(h31Ayx; + h3zAy ;i + h33) = hy Ay + hppAy i + hys



Estimating Homographies

Homogeneous linear system

~Ay, —A,; -1 0 0
0 0 0 =—Ay; —Ay,
~Ay, —A,; -1 0 0
0 0 0 —Ays —Ayy

« His in the null-space of this matrix.

0
-1
0

-1

BmleJ
BylAml
Bmzsz

ByAAxA

 Finding a non-trivial solution: solve for H using SVD.

BnlAyJ
By14y1
Bmszz

By4Ay 4
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Homography
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Homography
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Keypoints

What makes a good keypoint?
Keypoints should stable under:

 Perspective changes
(homographies).

 Contrast changes.
e Lighting changes.

« Other changes, as much as
possible.

25



Keypoints

« Keypoints on blobs, corners, and high-contrast regions are
the most stable.

« We will describe each keypoint through its local
neighbourhood (patch).

* If we make the patch small, we can assume mostly simple
geometric transformations of the neighbourhood (e.g.
homographies)



Scale
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Scale

 To arrive at a good local
neighbourhood
descriptor, we need to
define the size of the

neighbourhood. Lot

* This defines the scale of
a keypoint.
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Detecting Scale
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Scale Space

« We need to define a unique scale for a keypoint: the
characteristic scale.

* This turns the problem of finding keypoints into a search
across three parameters: location and scale (x, y, o).

« We will find keypoints with scale by finding local minima in
an energy function E(x, y, g).



Laplacian of Gaussian

Gaussian g

Source: |. Johnson and D. Fouhey



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

Laplacian of Gaussian

* This is a blob detector.

* It will have minima in space and scale
when the filter “matches” a blob -

« We will analyse why in 1D.
2D LoG filter



Laplacian of Gaussian 1D

 Laplacian of Gaussian is the
spatial 2"d order derivative of a
Gaussian.

1 2 2

* LoG(x) = ——(1 —x—z) e"z%

o

« We will vary o and convolve a
simple signal with the filter.

« To make the output
comparable, the response
needs to be scaled by o.
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Laplacian of Gaussian 1D
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Laplacian of Gaussian 1D
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Laplacian of Gaussian 1D
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Laplacian of Gaussian 1D
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Laplacian of Gaussian 1D
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2D Multiscale Blob Detection

« Convolve image with Laplacian of Gaussian filter at several
values of o.

 Find maxima of squared Laplacian response in space and
across scales.

e In practice, this means looking at a 3x3x3 neighborhood in
the (x,y,g) space. If the center is larger than its 26
neighbours: you found a blob!



Beyond Blob Detection

« Now we can detect
blobs and their scale.

* Next, we want to find
the orientation of a
keypoint.

* This allows us to
describe a keypoint
Invariant to rotation.

40



Keypoint Orientation

« Compute the angles of
the local edges around
the keypoint. (Sobel)

* Discretise into 45 deg.

Increments.
0 2 "
e Pick the most Edge directions in the _ ? .
common direction as range of the keypoint ?Aicsftr'ﬁﬁsatrl%'ﬁrﬁgﬁ

the overall orientation.

A1
Adapted from S. Lazebnik



SIFT Descriptor

« Compute a descriptor for a
keypoint.

A descriptor is a vector that
characterises the local information
around the ke)(]point so that it can
be found in other images.

- Idea: use edge directions again
(invariant to brightness changes,
equivariant to rotation).

« Compute and store local edge
histograms.

Fl= s | =

LI."I-I- | B
|||.|.1||.1||l|'||

Image gradients

Keypoint descriptor
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SIFT Descriptor

« Compute edge orientations and global
orientation.

- Rotate all edges so that the global
orientation is “up”.

* Split the local area around the keypoint
Into 4x4=16 regions.

« Compute edge histograms (8 directions)
for each region.

« Concatenate histograms: descriptor 128
dimensional vector.

Fl= s | =

LI."I-I- | B
|||.|.1||.1||l|'||

Image gradients

Keypoint descriptor
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Feature Matching

- Many different strategies.

 Brute force matching:

« For each descriptor in the first image, return the one with the
lowest distance (e.g. Euclidean distance).

« Sort all matches by their distance and take the top N.

e Later: better strategies such as RANSAC.

- Idea: check if matches are consistent with a transformation, e.g.
homography. This is geometric verification.



Correspondences

Point correspondences estimated by a classic algorithm: SIFT

R e BT
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Local to Global Matching

 Given an image, we now want to find similar other images.

« We can use feature matching, but this means comparing all
Image features to all database features: very slow!

101Y% images * 103 kpts * 10 dims * 103 query kpts = 10180ops!

Fasteﬁt) super-computer: 1000 Peta-FLOPS (=1 sec for every image
searc

* |dea: compute a single global descriptor for an image.

* The global descriptor should capture the local information form
the Keypoints.



K-means Clustering

* Divide the space into K clusters S.

* Minimise the sum of squared distances
of points in a cluster.

K
S e

argmin ) — X —y
S i=1|5i|

X,YES;

« We can treat the cluster assignment as
a category for the point.



Visual Words

« Compute SIFT features on a large image dataset.

« Compute K-means clustering and assign each feature to one
of K “classes”.

« An image can now be described with a histogram of feature
classes it contains.

* This is a reduction in descriptor size per image from
#features*#dimensions to K.
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Visual word examples. Each row is an
equivalence class of patches mapped to the
same cluster by K-means.
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Slide from A Vedaldi



https://www.robots.ox.ac.uk/~vedaldi/assets/teach/2023/c18-lectures-handout.pdf

Bag of Visual Words

* When computing the histogram, it does not matter where
each feature comes from in the image.

* This is similar to classic text-based retrieval systems: count
how often each word appears in a document. Documents on
similar topics have similar statistics.

« With large K (and a large dataset) the image descriptor is
usually sparse (i.e. most entries are 0)

 Sparse vectors can be stored and compared efficiently: only
store/compare non-zero elements.



Bag of Visual Words

57



isual Words
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Image Retrieval

Given a query image, compute keypoints and descriptors.
Find keypoint labels from pre-computed (k-)means.
Compute bag of visual words for the query.

Compare BoW query to all database BoWs and retrieve top
M.

5. Optional: perform additional (slower) verification for the
top M results.

W=



Image retrieval

ID: oxc1_magdalen_000545

Score: 159.000000

Putative: 185

Inliers: 159

Hypothesis: 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000
Detail

 Can also be used to 1
search for image
regions

ID: oxc1_magdalen_000320
Score: 15.000000

¢ Idea. COI I l ute BOW 2 Putative: 23
* Inliers: 15
. . . Hypothesis: 1.716253 0.000000 228.571564 0.000000 1.716253
within a region
* Detail

ID: oxc1_magdalen_000503

Score: 15.000000

Putative: 30

Inliers: 15

Hypothesis: 1.008171 0.000000 587.129517 0.000000 1.008171
124.094452

Detail

« Demo 3

Fhilbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A.

Object retrieval with large vocabularies and fast spatial matching
ID: oxc1_magdalen_000941

Score: 15.000000

Putative: 30

Inliers: 15

Hypothesis: 0.724051 0.000000 646.744324 0.000000 0.724051
131.799896

Detail

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)

Chum, O., Philbin, J., Sivic, J., Isard, M. and Zisserman, A. 4

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval

Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)


https://zeus.robots.ox.ac.uk/oxfordbuildings/
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