
Matching Indexing 
Search

Computer Vision – Lecture 05
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Further reading

• Slides from A Vedaldi

• Slides from S Lazebnik

• Slides from J Johnson and D Fouhey
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https://www.robots.ox.ac.uk/~vedaldi/assets/teach/2023/c18-lectures-handout.pdf
https://slazebni.cs.illinois.edu/fall22/
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx


So far

• Lectures 02 – 04:
• Various operations a single image 

• Usually, we are dealing with more than one image.

• We want to relate one image to another in various ways.
• Points

• Transformations

• Images
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What are the three most important 
problems in computer vision?

1. Correspondence

2. Correspondence

3. Correspondence

4Takeo Kanade (金出武雄)

Image source

https://en.wikipedia.org/wiki/Takeo_Kanade


Correspondences

• Given two images of the same scene

• Find corresponding points 
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Correspondences

• Simply subtracting the images does not work
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Correspondences
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Point correspondences estimated by a classic algorithm: SIFT



Scale Invariant Feature Transform (SIFT)

Algorithm overview:

1. Keypoint detection

2. Keypoint description

3. Keypoint matching

8



Keypoints

• What makes a good keypoint?

• Easy to find in other images!

Intuitions:

• A: untextured regions are difficult 
to reidentify

• B: good keypoint

• C: stable under viewpoint 
changes, but multiple 
occurrences

• D: hard to find exact point along 
the edge
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Image Transformations - again

• We know how to model rotation and translation:

𝑇 𝑥, 𝑦 = 𝐴
𝑥
𝑦
1

=
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑥
𝑦
1

This corresponds to 

• Rotation around the optical axis

• Translation along the optical axis
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• Connects the centre of the 
camera with the centre of the 
image plane.

• Camera rotation around the 
axis rotates the image around 
its centre.

• Camera translation along the 
axis scales the image around 
its centre.
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Optical Axis

optical axis



Camera Motion vs. Image Motion 

• Relating how 3D camera motions change the image is 
important to model viewpoint changes.

• We know: rotation and translation around/along the optical 
axis maps to affine 2D transformations.

• What about other viewpoint changes?
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Homography

• We will assume that everything 
we see lies on a single 3D plane.

• A circle on the 3D plane maps to 
an ellipse in the image.

• We will see the mathematical 
derivation in lecture 16.
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Image source

https://preview.redd.it/how-are-fake-backlot-building-facades-built-v0-3mpya7e6a6nb1.png?width=1000&format=png&auto=webp&s=bd1f7625b9301d8b817922350f24a1043b21b23c


Homography

14



Homography

• We are looking for a transformation 
that maps 4 points (from a 3D plane) 
in one image to another image.

• 𝑇 𝐴𝑖 = 𝐵𝑖 , ∀𝑖 ∈ 1,2,3,4

• All 8 points can be in arbitrary 2D 
positions.

• Degrees of freedom: 8 

(2 equations for every 2D point pair)
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Homogeneous Coordinates II

Geometric interpretation:

• We define an equivalence class:

𝑥
𝑦
1

= 𝜆
𝑥
𝑦
1

, 𝜆 ∈ ℝ ∧ 𝜆 ≠ 0

• This embeds ℝ2 in ℝ3.

• We identify the 2D point 𝑥, 𝑦 T 
with the class [ 𝑥, 𝑦, 1 T]. 
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Homogeneous Coordinates II

• Given a point in homogeneous coordinates 
𝑥
𝑦
𝑧

 we can 

compute its 2D counterpart as 
𝑦/𝑧
𝑥/𝑧

 if 𝑧 ≠ 0.

• Points with 𝑧 = 0 have a special meaning: they lie at infinity 
(later).

• Now we can describe homographies.
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Homography

A homography 𝐻 is a transformation of 2D homogeneous 
coordinates 𝑝 of the form

𝑇 𝑝 = 𝐻
𝑥
𝑦
𝑧

=

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

𝑥
𝑦
𝑧

• Since homogeneous coordinates are equivalence classes of 
points, this matrix has only 8 degrees of freedom:

𝐻𝑝 = [𝜆𝐻𝑝]

• We often rescale the matrix by 𝜆 =
1

ℎ33
 such that the bottom 

right element is 1. 
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Homography

• When applying a homography, make sure renormalise points 

to treat them as 2D coordinates 
𝑦/𝑧
𝑥/𝑧

! 

• A homography is uniquely defined by 4 point-
correspondences if no 3 points lie on the same line.

• Naturally, also images can be transformed with a 
homography. (Lecture 02)
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Estimating Homographies

𝐻[𝐴𝑖] = [𝐵𝑖], ∀𝑖 ∈ 1,2,3,4

• Two equations per correspondence

𝐵𝑥,𝑖 =
ℎ11𝐴𝑥,𝑖 + ℎ12𝐴𝑦,𝑖 + ℎ13

ℎ31𝐴𝑥,𝑖 + ℎ32𝐴𝑦,𝑖 + ℎ33
, 𝐵𝑦,𝑖 =

ℎ21𝐴𝑥,𝑖 + ℎ22𝐴𝑦,𝑖 + ℎ23

ℎ31𝐴𝑥,𝑖 + ℎ32𝐴𝑦,𝑖 + ℎ33

Multiplying by the denominator:
𝐵𝑥,𝑖 ℎ31𝐴𝑥,𝑖 + ℎ32𝐴𝑦,𝑖 + ℎ33 = ℎ11𝐴𝑥,𝑖 + ℎ12𝐴𝑦,𝑖 + ℎ13

𝐵𝑦,𝑖(ℎ31𝐴𝑥,𝑖 + ℎ32𝐴𝑦,𝑖 + ℎ33) = ℎ21𝐴𝑥,𝑖 + ℎ22𝐴𝑦,𝑖 + ℎ23
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Estimating Homographies

Homogeneous linear system

−𝐴𝑥,1 −𝐴𝑦,1 −1 0 0 0 𝐵𝑥,1𝐴𝑥,1 𝐵𝑥,1𝐴𝑦,1 𝐵𝑥,1

0 0 0 −𝐴𝑥,1 −𝐴𝑦,1 −1 𝐵𝑦,1𝐴𝑥,1 𝐵𝑦,1𝐴𝑦,1 𝐵𝑦,1

−𝐴𝑥,2 −𝐴𝑦,2 −1 0 0 0 𝐵𝑥,2𝐴𝑥,2 𝐵𝑥,2𝐴𝑦,2 𝐵𝑥,2

 ⋮  
0 0 0 −𝐴𝑥,4 −𝐴𝑦,4 −1 𝐵𝑦,4𝐴𝑥,4 𝐵𝑦,4𝐴𝑦,4 𝐵𝑦,4

ℎ11

ℎ12

ℎ13

ℎ21

ℎ22

ℎ23

ℎ31

ℎ32

ℎ33

= 𝟎

• 𝐻 is in the null-space of this matrix.

• Finding a non-trivial solution: solve for 𝐻 using SVD.
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Homography
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Homography
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Homography
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Keypoints

What makes a good keypoint?

Keypoints should stable under:

• Perspective changes 
(homographies).

• Contrast changes.

• Lighting changes.

• Other changes, as much as 
possible.
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Keypoints

• Keypoints on blobs, corners, and high-contrast regions are 
the most stable.

• We will describe each keypoint through its local 
neighbourhood (patch).

• If we make the patch small, we can assume mostly simple 
geometric transformations of the neighbourhood (e.g. 
homographies)
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Scale
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Scale

• To arrive at a good local 
neighbourhood 
descriptor, we need to 
define the size of the 
neighbourhood.

• This defines the scale of 
a keypoint.
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Detecting Scale
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Scale Space

• We need to define a unique scale for a keypoint: the 
characteristic scale.

• This turns the problem of finding keypoints into a search 
across three parameters: location and scale 𝑥, 𝑦, 𝜎 .

• We will find keypoints with scale by finding local minima in 
an energy function E 𝑥, 𝑦, 𝜎 .
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Laplacian of Gaussian

𝜕

𝜕𝑦
𝑔

𝜕

𝜕𝑥
𝑔

Gaussian 𝑔
𝜕2

𝜕2𝑦
𝑔

𝜕2

𝜕2𝑥
𝑔

𝜕2

𝜕2𝑥
𝑔 +

𝜕2

𝜕2𝑦
𝑔

+

Source: J. Johnson and D. Fouhey

https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx


Laplacian of Gaussian

• This is a blob detector.

• It will have minima in space and scale 
when the filter “matches” a blob

• We will analyse why in 1D. 
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2D LoG filter



Laplacian of Gaussian 1D

• Laplacian of Gaussian is the 
spatial 2nd order derivative of a 
Gaussian.

• LoG 𝑥 = −
1

𝜋𝜎2 1 −
𝑥2

𝜎2 𝑒
−

𝑥2

2𝜎2

• We will vary 𝜎 and convolve a 
simple signal with the filter.

• To make the output 
comparable, the response 
needs to be scaled by 𝜎.

33



Laplacian of Gaussian 1D

34
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Laplacian of Gaussian 1D
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Laplacian of Gaussian 1D
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* =

minimum over all scales



Laplacian of Gaussian 1D
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Laplacian of Gaussian 1D
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2D Multiscale Blob Detection

• Convolve image with Laplacian of Gaussian filter at several 
values of 𝜎.

• Find maxima of squared Laplacian response in space and 
across scales.

• In practice, this means looking at a 3x3x3 neighborhood in 
the 𝑥, 𝑦, 𝜎  space. If the center is larger than its 26 
neighbours: you found a blob!
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Beyond Blob Detection

• Now we can detect 
blobs and their scale.

• Next, we want to find 
the orientation of a 
keypoint.

• This allows us to 
describe a keypoint 
invariant to rotation.
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Keypoint Orientation

• Compute the angles of 
the local edges around 
the keypoint. (Sobel)

• Discretise into 45 deg. 
increments.

• Pick the most 
common direction as 
the overall orientation.
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0 2 

Adapted from S. Lazebnik

Edge directions in the 
range of the keypoint Discretise angles and 

chose most common



SIFT Descriptor

• Compute a descriptor for a 
keypoint.

• A descriptor is a vector that 
characterises the local information 
around the keypoint so that it can 
be found in other images.

• Idea: use edge directions again 
(invariant to brightness changes, 
equivariant to rotation).

• Compute and store local edge 
histograms.
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SIFT Descriptor

• Compute edge orientations and global 
orientation.

• Rotate all edges so that the global 
orientation is “up”.

• Split the local area around the keypoint 
into 4x4=16 regions.

• Compute edge histograms (8 directions) 
for each region.

• Concatenate histograms: descriptor 128 
dimensional vector.
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Feature Matching

• Many different strategies.

• Brute force matching:
• For each descriptor in the first image, return the one with the 

lowest distance (e.g. Euclidean distance).

• Sort all matches by their distance and take the top N.

• Later: better strategies such as RANSAC.
• Idea: check if matches are consistent with a transformation, e.g. 

homography. This is geometric verification.
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Correspondences

45

Point correspondences estimated by a classic algorithm: SIFT



Local to Global Matching

• Given an image, we now want to find similar other images.
• We can use feature matching, but this means comparing all 

image features to all database features: very slow!

1010 images * 103 kpts * 102 dims * 103 query kpts = 1018ops!
Fastest super-computer: 1000 Peta-FLOPS (=1 sec for every image 
search)

• Idea: compute a single global descriptor for an image.
• The global descriptor should capture the local information form 

the keypoints.
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K-means Clustering

• Divide the space into 𝐾 clusters 𝒮.

• Minimise the sum of squared distances 
of points in a cluster.

arg min
𝒮



𝑖=1

𝐾
1

|𝑆𝑖|


𝑥,𝑦∈𝑆𝑖

𝑥 − 𝑦 2

• We can treat the cluster assignment as 
a category for the point.

47



Visual Words

• Compute SIFT features on a large image dataset.

• Compute 𝐾-means clustering and assign each feature to one 
of 𝐾 “classes”.

• An image can now be described with a histogram of feature 
classes it contains.

• This is a reduction in descriptor size per image from 
#features*#dimensions to 𝐾.
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Example

49
Slide from A Vedaldi

https://www.robots.ox.ac.uk/~vedaldi/assets/teach/2023/c18-lectures-handout.pdf


Bag of Visual Words

• When computing the histogram, it does not matter where 
each feature comes from in the image. 

• This is similar to classic text-based retrieval systems: count 
how often each word appears in a document. Documents on 
similar topics have similar statistics.

• With large 𝐾 (and a large dataset) the image descriptor is 
usually sparse (i.e. most entries are 0)

• Sparse vectors can be stored and compared efficiently: only 
store/compare non-zero elements.
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Bag of Visual Words
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Bag of Visual Words
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Image Retrieval

1. Given a query image, compute keypoints and descriptors.

2. Find keypoint labels from pre-computed (k-)means.

3. Compute bag of visual words for the query.

4. Compare BoW query to all database BoWs and retrieve top 
M.

5. Optional: perform additional (slower) verification for the 
top M results.
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Image retrieval

• Can also be used to 
search for image 
regions

• Idea: compute BoW 
within a region.

• Demo
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https://zeus.robots.ox.ac.uk/oxfordbuildings/
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