
Image Classification
Computer Vision – Lecture 06
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Further Reading

• Slides from A Zisserman and A Vedaldi

• Pattern Recognition and Machine Learning, C Bishop

• Deep Learning, Goodfellow, Bengio, Courville

2

https://www.robots.ox.ac.uk/~az/lectures/aims-big_data/discrim_learning1.pdf


So far

• We know a/one way to compare images:

• Compute a BoW descriptor for each image.

• This allows finding similar images: compute descriptor similarities

• Does this tell us if the image contains a cat?

• How do we know if the image contains a cat?
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Image Embeddings

• Formally, we define a feature extractor 𝜙: ℝ𝐻×𝑊×3 → ℝ𝑑 for 
images.

• 𝜙 maps images to d-dimensional descriptor vectors. 

• A good 𝜙 maps similar images close-by in the feature space, while 
different image have large distances.

• BoW is an image embedding.

• Allows retrieval and many other applications.
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Supervised Learning Summary

Dataset 𝐷 = 𝑥𝑖 , 𝑦𝑖 1 ≤ 𝑖 ≤ 𝑁}

Inputs 𝑥𝑖

Outputs 𝑦𝑖

Training/Validation/Testing 𝐷 = 𝐷𝑇 ∪ 𝐷𝑉 ∪ 𝐷∗

Learn 𝑓 𝑥 = 𝑦 by minimizing σ 𝑥𝑖,𝑦𝑖 ∈𝐷𝑇
ℒ(𝑓 𝑥𝑖 , 𝑦𝑖) 

Hoping to generalise: σ 𝑥𝑖,𝑦𝑖 ∈𝐷∗
ℒ(𝑓 𝑥𝑖 , 𝑦𝑖)
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Supervised Learning - Data

CIFAR-10 dataset (Alex Krizhevsky, 2009) 

• 60000 32x32 colour images 

• 10 classes

• 6000 images per class

• 50000 training images 

• 10000 test images 
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Image Embeddings
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Nearest Neighbour Classification

• Embed a new sample with 𝜙.

• Look up nearest neighbours in the embedding space.

• Predicted class is the majority vote of the neighbourhood.

• Can also return class distribution.
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Image Embeddings
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Nearest Neighbour Classification

3-NN Classification:

• 𝑝 𝐼, truck =
2

3

• 𝑝 𝐼, car =
1

3

• 𝑝 𝐼, other classes = 0
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Nearest Neighbour Classification

Algorithm

Training:

• Precompute the feature 
embedding of all training 
samples.

• Optional: use a fast NN-
lookup data structure (e.g. 
kd-trees).

Testing:

• Compute the embedding for 
the new image.

• Look up k-NN and compute 
class histogram.
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Embedding Function Example

• We count the number of blue 
and green pixels.

• 𝜙: ℝ𝐻×𝑊×3 → ℝ2 is easy to 
visualise.

• We classify boats vs deer.

• How do we measure the 
quality of a classifier?
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Accuracy

We compute the number of samples the classifier 𝑓 predicts correctly.

Acc 𝑓 =
1

|𝐷∗|


𝑥,𝑦∈𝐷∗

𝑦 = 𝑓 𝑥

When the classifier predicts probabilities, we can also compute the 
expected accuracy:

EAcc 𝑓 =
1

|𝐷∗|


𝑥,𝑦∈𝐷∗

𝑓𝑦 𝑥

Where 𝑓𝑦 𝑥  is the predicted probability for class 𝑦.
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Precision and Recall

• Accuracy can be misleading when 
the label distribution is skewed.

• In a dataset where 90% of samples 
are of class 0, you can obtain 90% 
accuracy by always predicting 0.

• Precision: TP/(TP+FP)

• Recall: TP/(TP+FN)
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Image source

https://en.wikipedia.org/wiki/Precision_and_recall


𝑘-NN Classification

As 𝑘 increases:

• Classification boundary 
becomes smoother.

• Might improve or worsen 
performance.

Choose optimal 𝑘 on the 
validation set!
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𝑘-NN Summary

• 𝑘 -NN is simple but effective.

• Applies to multi-class classification.

• Decision surfaces are non-linear.

• Quality of predictions automatically improves with more 
“training” data.

• Only a single parameter, 𝑘; easily tuned by cross-validation.

• Often used as a baseline classifier.
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Image Classification in 2 Steps

1. Compute image embeddings.

2. Learn a classifier on the training set.

Two directions for improvements:

• Find a better embedding function.

• Find a better classifier.
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Linear Separability
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Decision Boundaries

• Even if our data is linearly separable, we might have many 
choices to place the decision boundary.

Intuitions
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good boundary – but why?



Maximum Margin

• If we assume some noise, tight boundaries 
can easily lead to miss-classifications.

• Both classifiers on the right have 100% 
accuracy.

• Maximum margin idea: place the decision 
boundary as far away from the samples as 
possible.

20



Maximum Margin

• Data points become 
support vectors for the 
decision boundary 
margins.

• We want to maximise the 
margin.
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Maximum Margin

• Data points become 
support vectors for the 
decision boundary 
margins.

• We want to maximise the 
margin.
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Linear Support Vector Machine

• Binary classification dataset: 
𝑥𝑖 , 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑦𝑖 ∈ {−1, 1}

Two objectives:
• Classification accuracy

• Maximising margins

• Linear classifier: 𝑓 𝑥 = 𝑤𝑇𝑥 + 𝑏
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Margin: 

2

𝑤

Decision boundary:
𝑤𝑇𝑥 + 𝑏 = 0



Linear Support Vector Machine

Classification criterion: 



𝑖

𝑦𝑖𝑓(𝑥𝑖) = 

𝑖

𝑦𝑖 𝑥𝑖
𝑇𝑤 + 𝑏 ≥ 1

This means that 𝑦𝑖 and 𝑓(𝑥𝑖) should have the same sign (=class) 
and 𝑓 𝑥𝑖 ≥ 1 pushes points beyond the margin.

Margin maximisation:

min 𝑤 2 

Quadratic optimization problem with linear constraints. In 
general: there is a unique solution.
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Training SVMs

Constraint:  σ𝑖 𝑦𝑖 𝑥𝑖
𝑇𝑤 + 𝑏 ≥ 1

Maximum margin: min 𝑤 2

Training loss: 
1

n
σ𝑖 max(0,1 − 𝑦𝑖 𝑥𝑖

𝑇𝑤 + 𝑏 ) + 𝜆 𝑤 2

Hinge loss: gradient of -1 until constraint is fulfilled.
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Hinge-loss



SVM Summary

• SVMs are good linear classifiers: maximum margin decision 
boundaries.

• Performance depends on the linear separability of the 
samples, thus on the image embedding function!

• Kernel SVM: non-linear decision boundaries.

• Intuition: learn a non-linear mapping to a space where 
classes are linearly separable together with the SVM
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Multi-Class Classification

• Setting: 𝐾 > 2 classes.

• Idea: train 𝐾 classifiers 𝑓𝑘(𝑥), 
each is a binary 1-vs-all 
classifier.

• Classification: choose the class 
with the highest score

argmax
𝑘

𝑓𝑘(𝑥)
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Multi-Class Classification

• Setting: 𝐾 > 2 classes.

• Idea: train 𝐾 classifiers 𝑓𝑘(𝑥), 
each is a binary 1-vs-all 
classifier.

• Classification: choose the class 
with the highest score

argmax
𝑘

𝑓𝑘(𝑥)
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Multi-Class Classification

Linear classifiers 
𝑓𝑘 𝑥 = 𝑤𝑘

𝑇𝑥 + 𝑏

Vector form: 

𝑓 𝑥 =
𝑤1

𝑇

⋮
𝑤𝐾

𝑇
𝑥 +

𝑏1

⋮
𝑏𝐾

= 𝑊𝑥 + 𝐵 =
𝑓1 𝑥

⋮
𝑓𝐾 𝑥

= 𝑌

How to we turn the class scores 𝑌 into a single class 
prediction?
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The soft-max Function

argmax
𝑘

𝑌𝑘 is not differentiable.

Idea: convert 𝑌 into a probability distribution. All elements in 
(0, 1) and sum to 1. 

softmax𝑘
𝑌 =

exp 𝑌𝑘

σ𝑗 exp 𝑌𝑗
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The soft-max Function

softmax𝑘
𝑌 =

exp 𝑌𝑘

σ𝑗 exp 𝑌𝑗

• Result sums to 1.

• All values between 0 and 1.

• Works for any input in ℝ𝐾 (positive and negative).

• If one 𝑌𝑖 ≫ 𝑌𝑗 than all others, softmax “selects” this element: 

softmax𝑖
𝑌 ≈ 1 and softmax𝑗

𝑌 ≈ 0. 
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Temperature

Often a temperature parameter 𝜏 is added to the softmax function

softmax𝑘
𝑌, 𝜏 =

exp
𝑌𝑘
𝜏

σ𝑗 exp
𝑌𝑗

𝜏

= softmax𝑘(
𝑌

𝜏
)

• Regulates the sharpness of the output distribution.

• Keeps relative ordering:
softmax𝑖

𝑌, 𝜏1 < softmax𝑗
𝑌, 𝜏1 ⇒ softmax𝑖

𝑌, 𝜏2 < softmax𝑗
𝑌, 𝜏2

• As 𝜏 → ∞ softmax becomes a uniform distribution

• As 𝜏 → 0 softmax becomes argmax (in a vector representation).
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Temperature

33The temperature controls the entropy of the resulting probability distribution.



Cross-entropy loss

Soft-max classifier for 𝐾 classes 𝐶𝑘: 

𝑝 𝐶𝑘 𝑥 = softmax𝑘 𝑓(𝑥) =
exp 𝑓𝑘(𝑥)

σ𝑗 exp 𝑓𝑗 𝑥

Loss function: 

• Idea: maximise the probability of the ground-truth class.

• Minimise cross-entropy between ground-truth probability 
distribution (one-hot) and the predicted distribution.

− 

𝑗

𝐾

𝑝𝐺𝑇(𝐶𝑗, 𝑥) log 𝑝 𝐶𝑘 𝑥
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Cross-entropy loss

− 

𝑘

𝐾

𝑝𝐺𝑇(𝐶𝑘 , 𝑥) log 𝑝 𝐶𝑘 𝑥

Since all 𝑝𝐺𝑇(𝐶𝑘|𝑥) are zero, except the target class 𝐶𝐺𝑇 ,i.e. 𝑝𝐺𝑇 𝐶𝐺𝑇 , 𝑥 = 1 , 
this simplifies to 

− log 𝑝 𝐶𝐺𝑇 𝑥 = − log
exp 𝑓𝐺𝑇 𝑥

σ𝑗 exp 𝑓𝑗 𝑥
= −𝑓𝐺𝑇 𝑥 + log 

𝑗

𝐾

exp 𝑓𝑗 𝑥

35
ground-truth distribution

𝑝𝐺𝑇 𝐶𝐺𝑇 𝑥 = 1 

𝑝𝐺𝑇 𝐶𝑘 𝑥 = 0
𝑘 ≠ 𝐺𝑇 

predicted distribution



Cross-entropy loss

• The cross-entropy soft-max loss is differentiable.

• It is often used to train classification methods. 

• There are some tricks to make it numerically stable.
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Multi-Label Classification

• Multi-Class: each image has 
exactly one class of which there 
are many.

• Multi-Label: each image can 
have multiple classes.

• Classes might or might not be 
exclusive.
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Image Classification in 2 Steps

1. Compute image embeddings.

2. Learn a classifier on the training set.

Many different approaches:

Image embeddings: FFT, BoW, HOG, Fisher Vectors, etc…

Classifiers: Linear Regression, SVMs, Kernel SVM, Random Forest, 
etc…

Deep Learning: 

 combine both steps and learn them simultaneously!
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ImageNet Classification Challenge
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First deep method on 
this benchmark

A Krizhevsky, et al., 
2012

SIFT-based
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