Convolutional Neural
Networks

Computer Vision - Lecture 07/

Further Reading

 Slides from F Li and slides from M Niessner

 Slides from E Gavves

* Deep Learning Book, by G,B,C, Chapter 9

» Foundations of Computer Vision, Torralba, Isola, Freeman

http://cs231n.stanford.edu/slides/2023/lecture_5.pdf
https://niessner.github.io/I2DL/material/Lectures/9.CNN-1.pdf
https://uvadlc.github.io/lectures/nov2016/lecture4.pdf
https://www.deeplearningbook.org/contents/convnets.html

Convolutional Filters

« We have seen many useful
convolutional filters:
« Gaussian Blur
 Edge Filters
« Sharpening
 Laplacian of Gaussian
« Gradient Filters

* They have been hand-crafted from
equations and intuitions.

Image Classification in 2 Steps

1. Compute image embeddings.
2. Learn a classifier on the training set.

Many different approaches
Image embeddings: FFT, BoW, HOG, Fisher Vectors, etc...

Classifiers: Linear Regression, SVMs, Kernel SVM, Random
Forest, etc...

Biological Motivation

Receptive fields of single neurones in the cat’s striate
cortex, D. H. Hubel and T. N. Wiesel, 1959

« Measure single neuron excitement
in the visual cortex.

* Neurons respond to oriented
edges

(.
A

0
0

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Stimulus

Biological Motivation

https://www.youtube.com/watch?v=IOHayh06LJ4

Edge “Filters”

* A individual neuron responds
to a quite precise angle of the
edge.

* There are neurons for every
angle.

« Remember: SIFT Descriptor.

DA

i

Neocognitron

A neural network, inspired by Hubel and Wiesel (1959):

« Cascaded structures: hierarchical and multi-layer

Fukushima, K. "Neocognitron: A hierarchical neural network capable of visual pattern recognition." Neural networks 1.2 (1988): 119-130.

Neocognitron

each cell with a local
connection area

A neural network, inspired by Hubel and Wiesel (1959).

« Cascaded structures: hierarchical and multi-layer

« Different types of alternating “cells” va 7

 Simple S-cells: /e e
extract local features Us ,ﬁ::,@:::ﬂ 7
(modifiable parameters) — .. =

« Complex C ; . .
shift-invariance | N

. Arr%ngemenéjn ell-planes, L /) :
each responding to a feature, | A =
l.e. local connections with \@M@% E
shared set of weights / = =

Fukushima, K. "Neocognitron: A hierarchical neural network capable of visual pattern recognition." Neural networks 1.2 (1988): 119-130.

Neocognitron

E_ocal features are gradually integrated and classified in higher
ayers:

 Basic features (edges, corners, etc.) in lower layers
 Global patterns in higher layers

Uc3

KX

Self-organizing maps:
* Initially no supervision (1980)
 Trained layer wise (1988)

Fukushima, K. "Neocognitron: A hierarchical neural network capable of visual pattern recognition." Neural networks 1.2 (1988): 119-130.

Towards CNNs

Convolutional Neural Networks (CNNs, LeCun 1989) are a category of multi-layer NNs
l\&vﬁR' learnable weights and biases, designed such that they tackle‘common problems of
S.

« Observation: Inputs are structured, e.g. images

- Key idea: Invariance to shifts, scale and small distortions using
- local weighted connections, i.e. local receptive field
« shared weights across spatial locations
« spatial sub-sampling

- Main operations:
« Convolutions
* Non-linearities
« max(-) functions

CNN Architecture

Network architecture generally composed by:

* “Filters” arranged in three dimensions: width, height and depth.

» Alternating convolutional (followed by a non-linear activation
function) and sub-sampling layers to produce features at
different levels of abstraction.

* Fully-connected layers that act as the final classifiers.

CNN —

Output

12

CNN Architecture

« CNN architectures are generally composed of:

 “Filters” arranged in three dimensions: width, height and depth.

« Alternating convolutional (followed by a non-linear activation
function) and sub-sampling layers to produce features at
different levels of abstraction.

* Fully-connected layers that act as the final classifiers.

Convolution Convolution Fully-connected

13

LeNet-5

e First successful modern CNN architecture
* Introduced in 1998 for handwritten digit recognition
 Trained with back-propagation and gradient descent

C3: . maps 16@10x10
C1: feature maps 541 maps 16@5x5

INPUT
@2 828
3232 52 f. maps

I
Full cmAeMnn ‘ (GGaussian connections

Convalutions Subsampling Corvolutions Subsampling Full connection

LeCun et al. "Gradient—Eb

i sed learning applied to document recognition."
Proceedings of the IEE -2324.

36.1 1(1998): 2??8

14

TITLE

Distinctive image features from scale-invariant keypoints
DG Lowe
International journal of computer vision 60 (2), 91-110

Object recognition from local scale-invariant features
DG Lowe
International Conference on Computer Vision, 1999, 1150-1157

Gradient-based learning applied to document recognition
Y LeCun, L Bottou, Y Bengio, P Haffner
Proceedings of the IEEE 86 (11), 2278-2324

CITED BY

77634

26433

72812

YEAR

2004

1999

1998

15

Convolutional Layer

Main operation of CNNSs

 Local Connectivity

Each neuron of a layer connects only to a local regn n of the previous layer (receptive
field) and the dot product is performed between this region and the learnable weights.

« Weight Sharing
The same weights are used for every spatial location in the input volume.

Fr)* g(xy) = Z Z Foum) - glx—ny —m)

nN=—00 m=—0co

« Before: apply the same filter to every channel.
« Now: filters will have separate weights for every channel.

Convolutional Layer

learnable weights
(parameters)

Y

.
Wi W2 W3

2| 2| 2]
wi |wy Wh W

2 B,

* wlwiwile o
2
wi wa wi Ws

wi wi wd

convolutional filter
hXwxXd

Input volume
(e.g. image)

Convolutional Layer

learnable weights
_______ (parameters)

L

*

convolutional filter
hXxwXd

Input volume Output
(e.g. image) (feature map)

The filter slides spatially but operates (dot product) on all dimensions

Convolutional Layer

zero-pad each border of the input by

h—1 w—1

HEEEEEEEREER / 2’ 2
||
[]
||
[]
I K
o e convolutional filter
EEEEEEEEEEE hixwxd
Input volume 3 % 3 % 3
(e.g. image)
10 x10 x 3

to retain the same size
in the output

Output
(feature map)

10 xX10x 1

19

Convolutional Layer

set of filters

*
|1

Input volume Output
(e.g. image) (feature maps)

learning multiple (different) filters = produce several feature maps = multitude of features

20

Convolutional Layer

Learnable parameters
l.e. the weights of the filters
biases added afterwards

Other hyperparameters

« spatial extend: width w, height h
number of channels: depthd

« number of filters f

« Stride s (Istep size) .
stride > 1 results in spatial sub-
sampling of the feature maps

« Padding p onthelnput
(on every side)

=)

Size of resulting feature maps:

hin_h+2p+

h =
out S

Win — W+ 2p
Wout: S +1

where hi,, Win, Royut, Woyt are the
height and width of input and
expected output respectively

Practical Considerations

=

ommon filter sizesare 3 x 3, 5 x5, etc.
X 1 is also possible because it operates in depth too.

« The third dimension d is almost always the same as the
number of channels in the input (but'not necessarily).

- Padding does not need to be symmetric (but usually is).

. Stackinfg convolutions extracts features with a progressively
higher level of abstraction.

First Layer Filters

First-layer filters from AlexNet (visualization of 96 [11 X 11 X 3] filters):

First-layer learned
features include
basic elements,

such as edges, blobs,
colors, etc.

Parameter sharing
thus appears to be
reasonable:
detecting e.g. an
edge is important at
any position of the
input image.

Krizhevsky, Sutskever, Hinton, "Imagenet classification with deep convolutional neural networks." NeurlIPS 2012. =

Activation Function

« Convolutions are linear operations

« Stacking them will still only give us a linear operation.
 Add a non-linear activation function in between.

Sigmoid: Tanh:

0.8

0.6

0.4

0.2

-10 -5 0 5

24
These functions saturate, making gradients very small = learning is very difficult.

Rectified Linear Unit (ReLU)

* Simply thresholds at zero
* Sparse activation

 Computationally efficient

* Non-saturating = speeds up convergence

Rectified Linear Unit (RelLU)
f(x) = max(0, x)

derivative =0

25

1.0

06

0.2

-0.2

Other Activation Functions

Binary Step Function

RelLU
Linear
10
8
8
o
0 /
2 fly)
8
8 0 8 10 S o 5 10
Leaky ReLU
Sigmoid / Logistic
max{01* x.x)
1
20
12
10
0.5
6
(4
max{01 * x,x)
10
9 o
-5
6 0 6 -10 0 10 S ®

Parametric RelLU

fly)

fly)=y

=ay

ELU (a=1) + Derivative

LU acmviion funcuion (aet

Certvative - iz

GELU

Swish

260
image source

https://www.v7labs.com/blog/neural-networks-activation-functions

Pooling Layers

e |dea: reduce the resolution to understand content at
different scales.

» |[dea: reduce the resolution to save computations.

« Performs an element-wise operation on the feature maps in
a local region, on each channel independently.

e Usually: max(-) or avg(-).

Max-Pooling Example

max value within the window

I |
2 u 3 2| Example: Max-pooling
v

. \4
g N S Ma.X_POO'hng 2 | s The window size is 2 X 2,
4 11216 . N applied with a stride of 2
5| 6 (common case)

Pooling Layer

« Parameter-free layer
« Used for feature map spatial sub-sampling (with stride > 1).
 Controls the capacity of the network by reducing the resolution.

* Introduces some invariance to small transformations of the input,
because precise spatial information is lost.

o Hyperparameters: Size of resulting pooled maps:
« width w and height h of window h, — h
e stride s hour = ——+1

overlapping of sliding window

. W. —W
occursifs<wors<h Wy = mS 11

Fully Connected Layer

* Fully-connected layers follow the principle of the typical ANN
weighted connections: each neuron in the output connects to all
neurons of the input.

« Usually added as the last layers of the network / output layer.

« Implemented as a linear function, plus bias, followed by a non-
linearity.

« Guarantee a full receptive field.

Fully Connected Layer

JL_JL_!!_' Can be also seen as a
_—lr?[] convolutional layer with a
rﬁ FC set of filters of the same
[size as the input volume,

4-{5,_" i.e. nfilters of size h X w X d

Inputh X w X d Output 1 X1 Xn
n being the only hyperparameter

INPUT

size: 24x24

8 filters/maps

CONV
5x5x1

|

SREE

+RelU

SRS

Notice how feature maps
activate on different basic
structures, depending on the
corresponding filter

32
Source A. Karpathy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

INPUT

size: 24x24

8 filters/maps

CONV
5x5x1

+RelU

ERERERELE

spatial sub-sampling by 2

33
Source A. Karpathy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

10 filters/

12 filters/maps

8 filters/maps

O =" AN < N O 0O

|

outputs

_ % ;v..m
HANNSIESN NN
2 % 4
S

SN M NN MY

RelLU

34

Source A. Karpathy

INPUT
size: 24x24

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Loss function

A CNN can be learned for different problems (classification or regression ones) by
minimizing a specified objective, i.e. the loss function.

It simply measures how well the CNN performs on the task.
To do this, a “loss layer” receives the output of the CNN (prediction) and compares it

to the ground truth of the given input.

Stochastic Gradient Descent: the loss over the entire dataset must be written as the

mean of the individual losses of the samples.

Training
pair

Input

Xi

—_—

CNN

estimator of function f

Loss function

A CNN can be learned for different problems (classification or
regression ones) by minimizing a specified objective,
l.e. loss function.

e It simply measures how well the CNN performs on the task.

 To do this, a “loss layer” receives the output of the CNN (prediction)
and compares it to the ground truth of the given input.

* The loss over the entire dataset is (most often) the mean
of the individual losses of the samples.

« Example: o
If our task is image classification,
 the ground truth is the labeled category for the image

 the prediction is a vector of scores, which represent the “probabilities” that the
input belongs to each of the existing categories.

Loss function

» Classification: soft-max cross-entropy (Lecture 06)

Regression:
« for tasks where the output is continuous.

% % 1 x
* Liny) = ly =yl =Xy — il

% % 1 %
* Lo y) =y =yl = - Zis i —)?

« Note that y, y* can have arbitrary dimensions depending on the task, e.g.
vectors of regressed points or entire prediction maps. |
n would then be the number of points or pixels respectively.

Task-specific loss functions that model some known properties of
the problem.

Regularization

Helps generalization to unseen data, i.e. preventing over-
fitting to the training samples.

Ground Truth Fit Model Overfitted Model
10 10

-0 5 8 -7 6 -5 -4 -3 -2 -1_10 1 2 3 4 5 6 7 8 9 10

In an over-fitted model, the predicted curve is not “regular”
Weights have very large or very small values

Regularization

* Itincludes methods for better generalization to unseen data, i.e. preventing
over-fitting to the training samples.

L2 regularization

* Penalty term: R = %awz (the squared magnitude of all parameters)
a is the regularizationstrength (typically small, e.g. order of 10~%)
« Favors weight “diffusion”

« Weight update through gradient descent: wy,; = w; — aw;
(linear decay)

L1 regularization

« Penalty term: R = a|w|
« Causes weight vector to become sparse and invariant to noisy inputs

Dropout

« Randomly “dropping out” neurons of a layer
(with probability p, usually 0.5) at each iteration of training

* This effectively means making them inactive (setting to zero) so that
they do not contribute in forward/backward passes

« Neurons do not learn to rely on the presence of other specific neurons
« Usually applied before the last fully-connected layer(s)

without with
dropout W\ X dropout
% g X
|—///
N 7 X
—
L

/ X /\=

/

N/
/!

Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting."
Journal of Machine Learning Research 15.7 (2014)

Optimization methods

For a training iteration t and the current state of parameters denoted
as w;, an update is performed as:

Wep1 = W + Awg
A variety of first-order solvers, popular for training CNNs:

» Stochastic Gradient Descent (SGD)
Follow the negative gradient for a “mini-batch” of samples Aw; = —A1g;
« Requires manual setting of learning

- Manual annealing: decrease learning rate, if validation curve “plateaus”
to prevent parameters from oscillating near local minima

« SGD with momentum
Keep in memory previous weight updates Aw; = pAw;_; — Ag;

« > Accelerates SGD progress when gradient points in the same
direction as before and dampens oscillations

Rumelhar, Hinton, Williams, "Learning representations by back-propagating errors." Nature 323 (1986): 533-536.

Adam (Adaptive Moment Estimation)

Additionally keep an exponentially decaying average of
previous gradients:

my = Pim_1 + (A —=PB1)g. > my=my/(1—py)
v =By +(A=B)gi > TV = v /(1—p3)

Suggested decay: f; = 0.9, B, = 0.999.
Initial averages: zeros

Kingma and Ba. "Adam: A method for stochastic optimization." ICLR"15.

How to train your network

Looking for the right learning rate...

extremely high learning rate: As for the validation curve,
ini A “exploding” gradients -
tg‘f‘"”'t’_‘g ploding & if it “plateaus” then decrease
opjective .
) the learning rate

(loss)

high learning rate:
big step down and then
caught on local minimum

good learning rate

>
iterations (epochs)

43

How to train your network

Validation vs Training (when data comes from the same

distribution)
A —— train
objective — 3l
(loss) T

overfitting the
training data!

iterations (epochs)

If bias is high:
Train a bigger model
or train longer

If variance is high:

Try more data,
augmentations,
regularization (e.g. dropout)

If overfitting:
Try more data or
early stopping

44

How to train

your network

When data comes from different distributions...

Distribution #1

Train set

Val set

Distribution #2

* If val error high: Get more data of distribution #2 (similar to the test scenario)

* If val error low, but

error high: Get more validation data

45

Architecture Example: VGG

Very Deep Convolutional Networks for Large-Scale Image
Recognition, Simonyan and Zisserman, 2014

T =224 %3 224 x 224 = 6d
.

« Different configurations:
11-19 layers Y

-':/.- .
o
i

TET®al2

 3x3 convolutions
3 large FC layers in the end

3G[>c 56 ¢ 266
/ A
vy ,f’f/f,ff—’hx—‘-“\?"—‘u i
—1
ra
)|)
£
v
LU L
Ll
;

46

VGG-19 34-layer plain 34-layer residual

image image image
. 3x3 conv, 64
o
output Dﬂﬁ*l'fz
° sz 12 TR o, 128
. e
[33con, 128 | o2 |
¥ ¥
paal, /2 poal, /2
e ¥ ¥
e ™ w;w 56| [acme |
[m3com.256 | | 3acomes |
) ¥
33 conw, 256 [3acomss |
[= J

3x3 conv, 64

Deep Residual Learning for Image Recognition, K = =
He et al., 2015 | e

e Introduces residual connections (next lecture) Com o

(

r

¥
[3dconv, 128 | 33 canv, 128

¥
[33convias | 303 conv, 128

- Again: different sizes m e o

256, /2 [3x3com, 256,72 |

€S e 2

¥
33w, 512 | 3x3 conv, 256 3
+
popular R18, R50, R101, R152 oo)
’ Y Y | 3dcomws512 | | 3325 |
hdconw, 512 | T
L
[33w 256 |
3x3 conv, 256 | I3 ou:w. 256

3x3 conv, 756

» Building blocks:

33 conv, 256

[sacom s |

¥

« Convolution (mainly 3x3) =

3x3 conw, 256

* RelU T el s
« Pooling ——
1 FClayer in the end =1

A
bl 2 - e

	Slide 1: Convolutional Neural Networks
	Slide 2: Further Reading
	Slide 3: Convolutional Filters
	Slide 4: Image Classification in 2 Steps
	Slide 5: Biological Motivation
	Slide 6: Biological Motivation
	Slide 7: Edge “Filters”
	Slide 8: Neocognitron
	Slide 9: Neocognitron
	Slide 10: Neocognitron
	Slide 11: Towards CNNs
	Slide 12: CNN Architecture
	Slide 13: CNN Architecture
	Slide 14: LeNet-5
	Slide 15
	Slide 16: Convolutional Layer
	Slide 17: Convolutional Layer
	Slide 18: Convolutional Layer
	Slide 19: Convolutional Layer
	Slide 20: Convolutional Layer
	Slide 21: Convolutional Layer
	Slide 22: Practical Considerations
	Slide 23: First Layer Filters
	Slide 24: Activation Function
	Slide 25: Rectified Linear Unit (ReLU)
	Slide 26: Other Activation Functions
	Slide 27: Pooling Layers
	Slide 28: Max-Pooling Example
	Slide 29: Pooling Layer
	Slide 30: Fully Connected Layer
	Slide 31: Fully Connected Layer
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Loss function
	Slide 36: Loss function
	Slide 37: Loss function
	Slide 38: Regularization
	Slide 39: Regularization
	Slide 40: Dropout
	Slide 41: Optimization methods
	Slide 42: Adam (Adaptive Moment Estimation)
	Slide 43: How to train your network
	Slide 44: How to train your network
	Slide 45: How to train your network
	Slide 46: Architecture Example: VGG
	Slide 47: Architecture Example: ResNet

