Convolutional Neural Networks

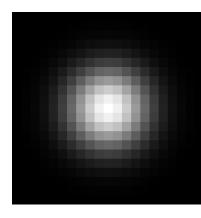
Computer Vision – Lecture 07

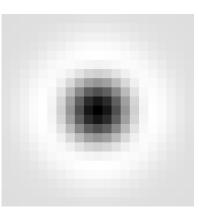
Further Reading

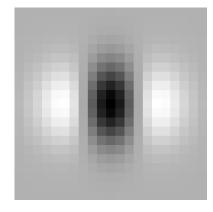
- Slides from <u>F Li</u> and slides from <u>M Niessner</u>
- Slides from <u>E Gavves</u>
- Deep Learning Book, by G,B,C, <u>Chapter 9</u>
- Foundations of Computer Vision, Torralba, Isola, Freeman

Convolutional Filters

- We have seen many useful convolutional filters:
 - Gaussian Blur
 - Edge Filters
 - Sharpening
 - Laplacian of Gaussian
 - Gradient Filters
 - ..
- They have been hand-crafted from equations and intuitions.







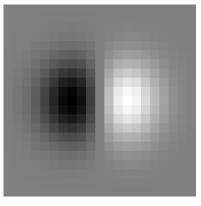


Image Classification in 2 Steps

- 1. Compute image embeddings.
- 2. Learn a classifier on the training set.

Many different approaches

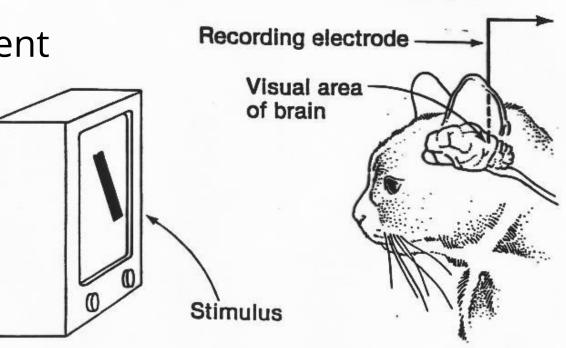
Image embeddings: FFT, BoW, HOG, Fisher Vectors, etc...

Classifiers: Linear Regression, SVMs, Kernel SVM, Random Forest, etc...

Biological Motivation

Receptive fields of single neurones in the cat's striate cortex, D. H. Hubel and T. N. Wiesel, 1959

- Measure single neuron excitement in the visual cortex.
- Neurons respond to oriented edges



Electrical signal

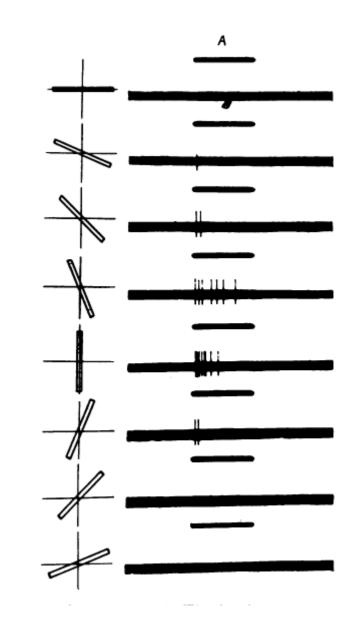
from brain

Biological Motivation

6 <u>video source</u>

Edge "Filters"

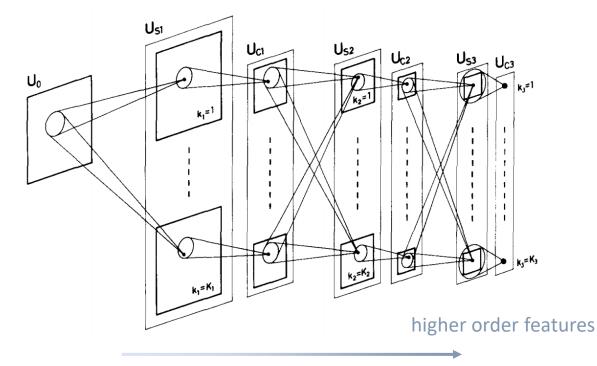
- A individual neuron responds to a quite precise angle of the edge.
- There are neurons for every angle.
- Remember: SIFT Descriptor.



Neocognitron

A neural network, inspired by Hubel and Wiesel (1959):

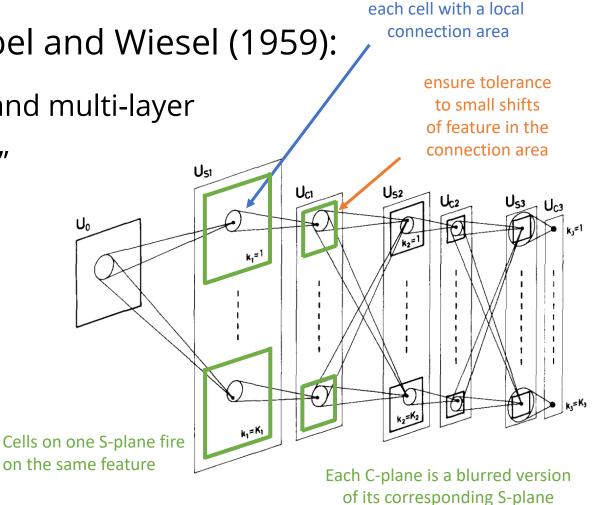
• Cascaded structures: hierarchical and multi-layer



Neocognitron

A neural network, inspired by Hubel and Wiesel (1959):

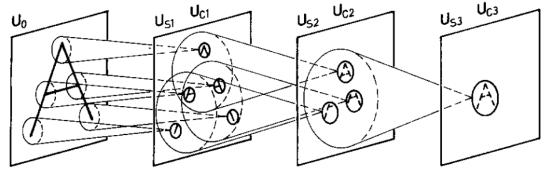
- Cascaded structures: hierarchical and multi-layer
- Different types of alternating "cells"
- Simple S-cells: extract local features (modifiable parameters)
- Complex C-cells: shift-invariance
- Arrangement in cell-planes, each responding to a feature, i.e. local connections with shared set of weights



Neocognitron

Local features are gradually integrated and classified in higher layers:

- Basic features (edges, corners, etc.) in lower layers
- Global patterns in higher layers



Self-organizing maps:

- Initially no supervision (1980)
- Trained layer wise (1988)

Towards CNNs

Convolutional Neural Networks (CNNs, LeCun 1989) are a category of multi-layer NNs with learnable weights and biases, designed such that they tackle common problems of ANNs.

- **Observation**: Inputs are structured, e.g. images
- **Key idea**: Invariance to shifts, scale and small distortions using
 - local weighted connections, i.e. local receptive field
 - shared weights across spatial locations
 - spatial sub-sampling

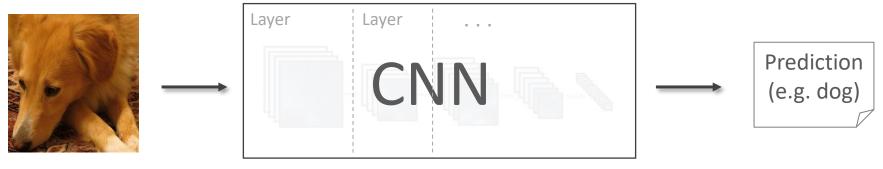
Main operations:

- Convolutions
- Non-linearities
- $max(\cdot)$ functions

CNN Architecture

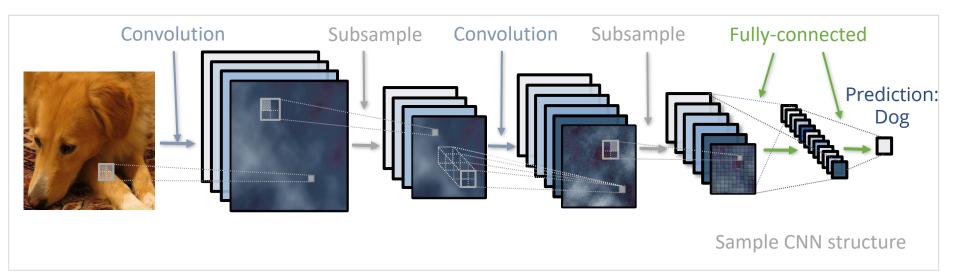
Network architecture generally composed by:

- "Filters" arranged in three dimensions: width, height and depth.
- Alternating convolutional (followed by a non-linear activation function) and sub-sampling layers to produce features at different levels of abstraction.
- Fully-connected layers that act as the final classifiers.



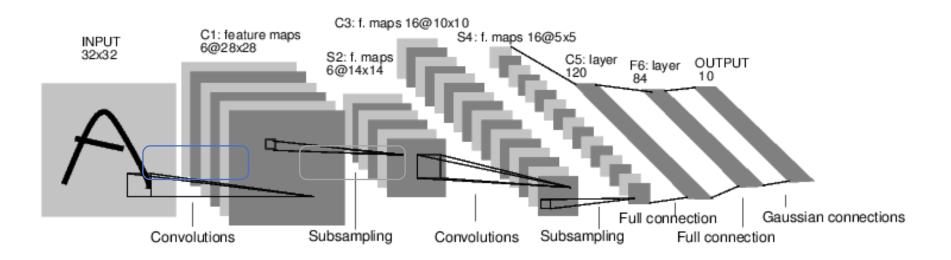
CNN Architecture

- CNN architectures are generally composed of:
- "Filters" arranged in three dimensions: width, height and depth.
- Alternating convolutional (followed by a non-linear activation function) and sub-sampling layers to produce features at different levels of abstraction.
- Fully-connected layers that act as the final classifiers.



LeNet-5

- First successful modern CNN architecture
- Introduced in 1998 for handwritten digit recognition
- Trained with back-propagation and gradient descent



TITLE	CITED BY	YEAR
Distinctive image features from scale-invariant keypoints DG Lowe International journal of computer vision 60 (2), 91-110	77634	2004
Object recognition from local scale-invariant features DG Lowe International Conference on Computer Vision, 1999, 1150-1157	26433	1999
Gradient-based learning applied to document recognition Y LeCun, L Bottou, Y Bengio, P Haffner Proceedings of the IEEE 86 (11), 2278-2324	72812	1998

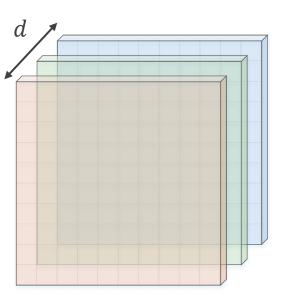
Main operation of CNNs

- Local Connectivity
 Each neuron of a layer connects only to a local region of the previous layer (receptive field) and the dot product is performed between this region and the learnable weights.
- Weight Sharing

The same weights are used for every spatial location in the input *volume*.

$$f(x,y) * g(x,y) = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} f(n,m) \cdot g(x-n,y-m)$$

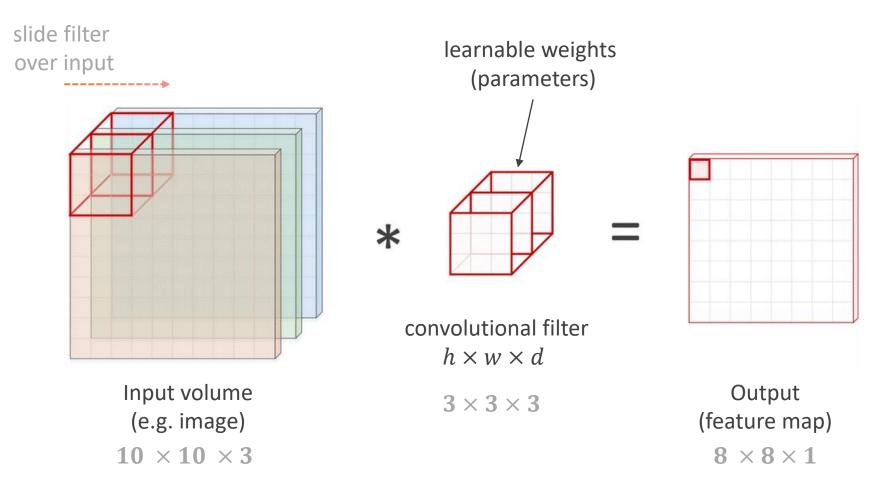
- Before: apply the same filter to every channel.
- Now: filters will have separate weights for every channel.



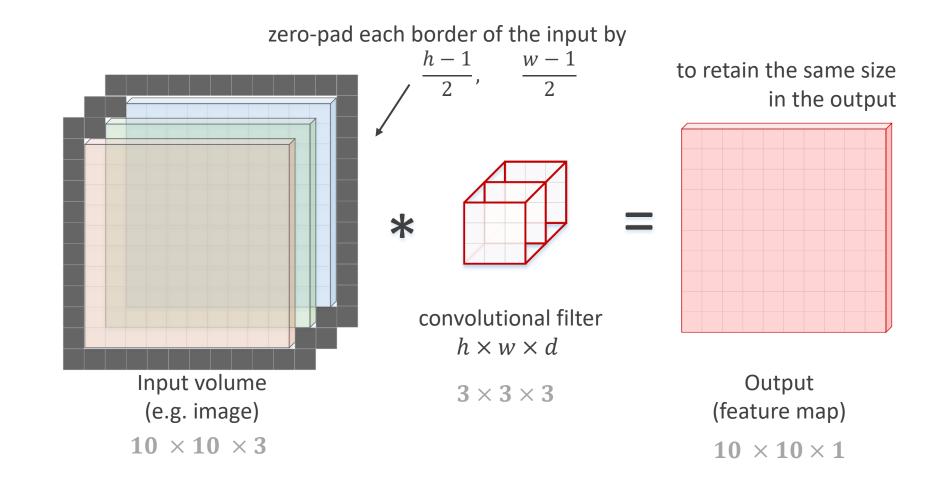
Input volume (e.g. image) learnable weights (parameters)

convolutional filter $h \times w \times d$

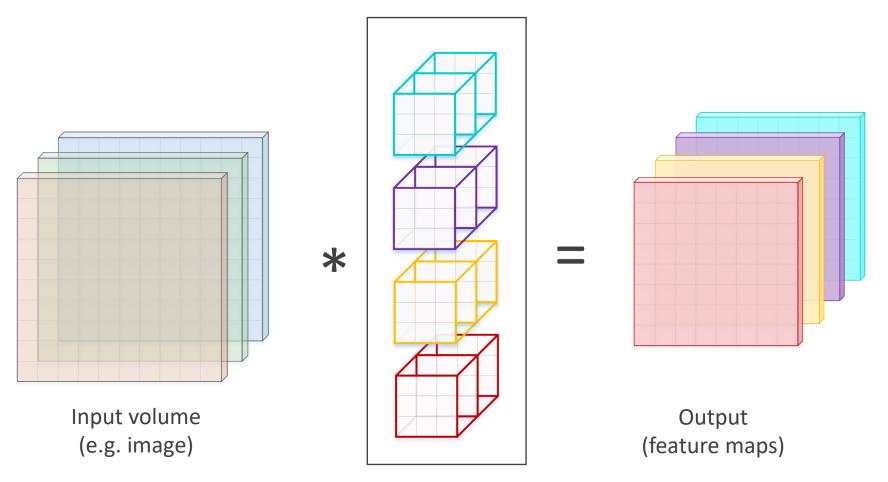
*



The filter slides spatially but operates (dot product) on all dimensions



set of filters



Learnable parameters i.e. the weights of the filters biases added afterwards

Other hyperparameters

- spatial extend: width *w*, height *h* number of channels: depth *d*
- number of filters *f*
- Stride s (step size) stride > 1 results in spatial sub-sampling of the feature maps
- Padding *p* on the input (on every side)

Each filter learns to activate on some sort of *feature*

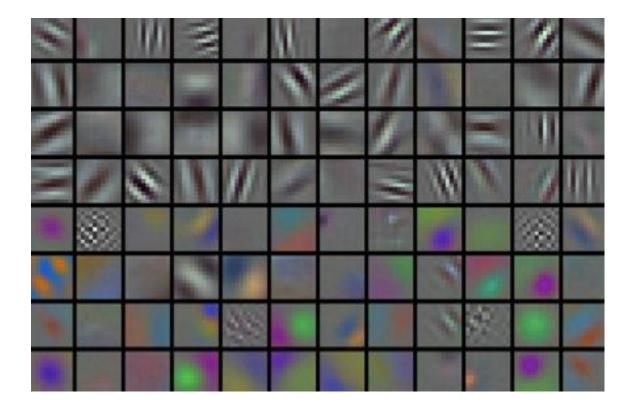
Size of resulting feature maps: $h_{out} = \frac{h_{in} - h + 2p}{s} + 1$ $w_{out} = \frac{w_{in} - w + 2p}{c} + 1$ where h_{in} , w_{in} , h_{out} , w_{out} are the height and width of input and expected output respectively

Practical Considerations

- Common filter sizes are 3×3 , 5×5 , etc. 1×1 is also possible because it operates in depth too.
- The third dimension *d* is almost always the same as the number of channels in the input (but not necessarily).
- Padding does not need to be symmetric (but usually is).
- Stacking convolutions extracts features with a progressively higher level of abstraction.

First Layer Filters

First-layer filters from **AlexNet** (visualization of 96 $[11 \times 11 \times 3]$ filters):

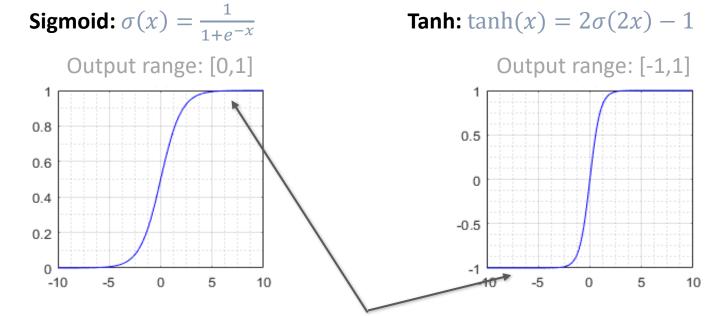


First-layer learned features include basic elements, such as edges, blobs, colors, etc.

Parameter sharing thus appears to be reasonable: detecting e.g. an edge is important at any position of the input image.

Activation Function

- Convolutions are linear operations
- Stacking them will still only give us a linear operation.
- Add a non-linear activation function in between.



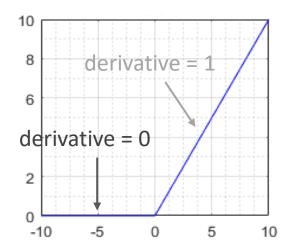
These functions saturate, making gradients very small \rightarrow learning is very difficult.

Rectified Linear Unit (ReLU)

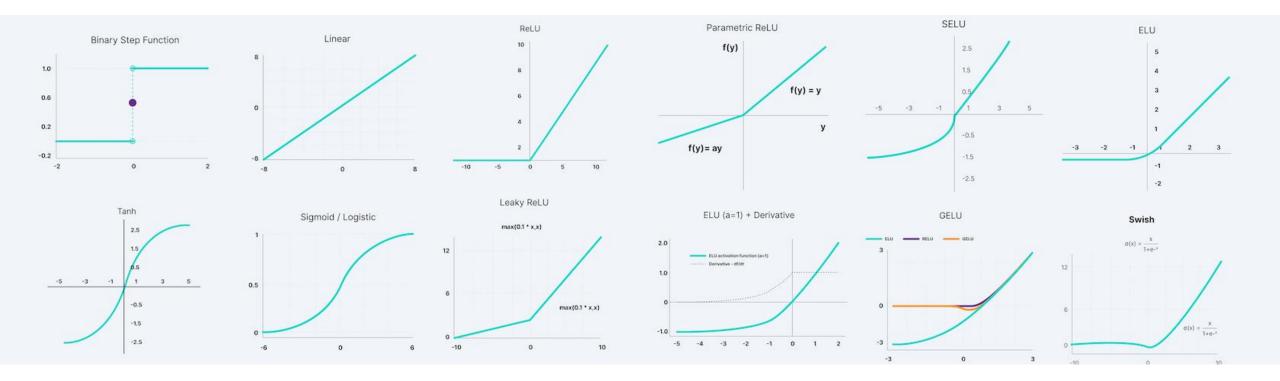
- Simply thresholds at zero
- Sparse activation
- Computationally efficient
- Non-saturating \rightarrow speeds up convergence

Rectified Linear Unit (ReLU)

 $f(x) = \max(0, x)$



Other Activation Functions

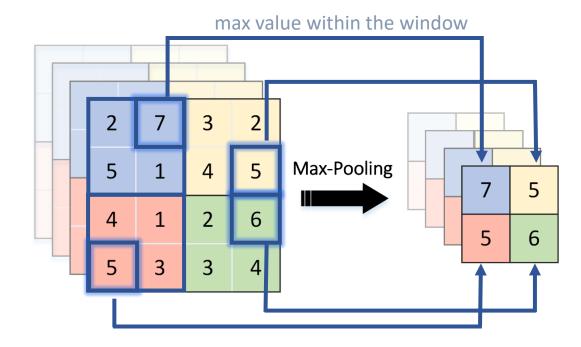


26 <u>image source</u>

Pooling Layers

- Idea: reduce the resolution to understand content at different scales.
- Idea: reduce the resolution to save computations.
- Performs an element-wise operation on the feature maps in a local region, on each channel independently.
- Usually: $max(\cdot)$ or $avg(\cdot)$.

Max-Pooling Example



Example: Max-pooling

The window size is 2×2 , applied with a stride of 2 (common case)

Pooling Layer

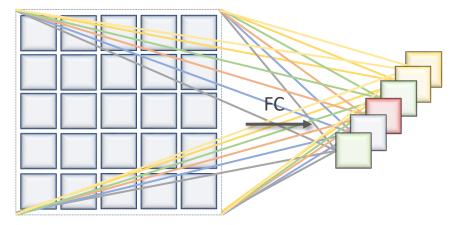
- Parameter-free layer
- Used for feature map spatial sub-sampling (with stride > 1).
- Controls the capacity of the network by reducing the resolution.
- Introduces some invariance to small transformations of the input, because precise spatial information is lost.
- Hyperparameters:
 - width *w* and height *h* of window
 - stride soverlapping of sliding window occurs if s < w or s < h

Size of resulting pooled maps: $h_{out} = \frac{h_{in} - h}{s} + 1$ $w_{out} = \frac{w_{in} - w}{s} + 1$

Fully Connected Layer

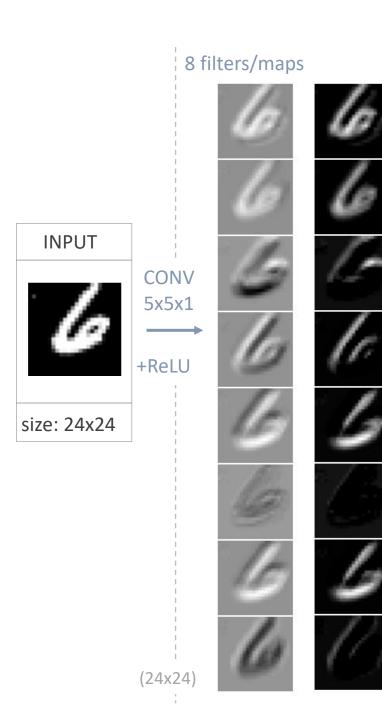
- Fully-connected layers follow the principle of the typical ANN weighted connections: each neuron in the output connects to all neurons of the input.
- Usually added as the last layers of the network / output layer.
- Implemented as a linear function, plus bias, followed by a nonlinearity.
- Guarantee a full receptive field.

Fully Connected Layer

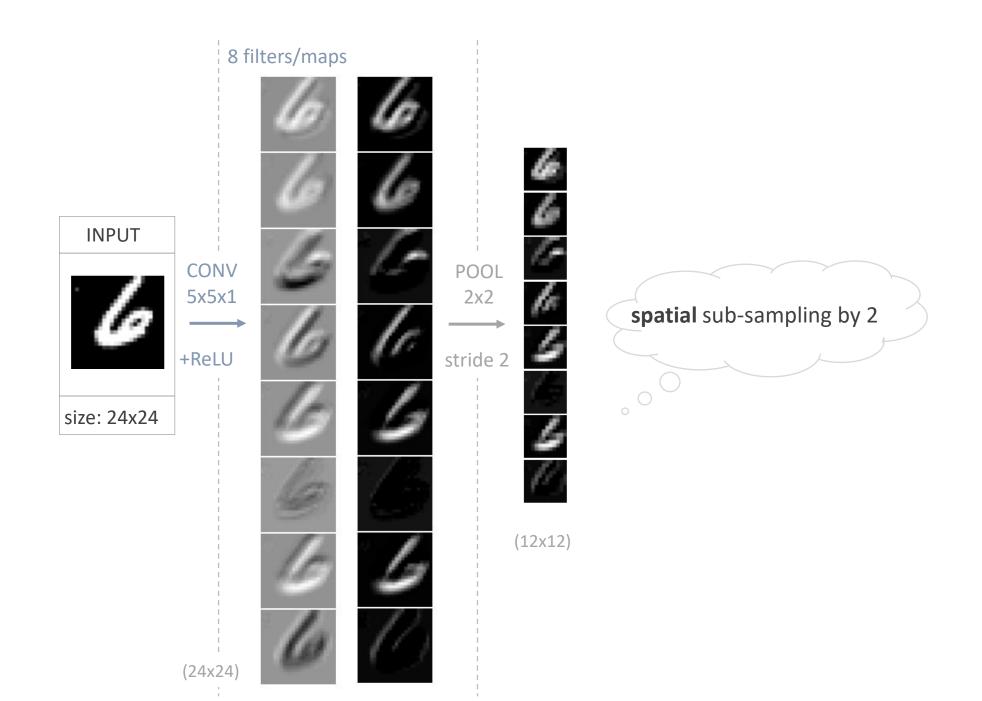


Can be also seen as a convolutional layer with a set of filters of the **same size** as the input volume, i.e. *n* filters of size $h \times w \times d$

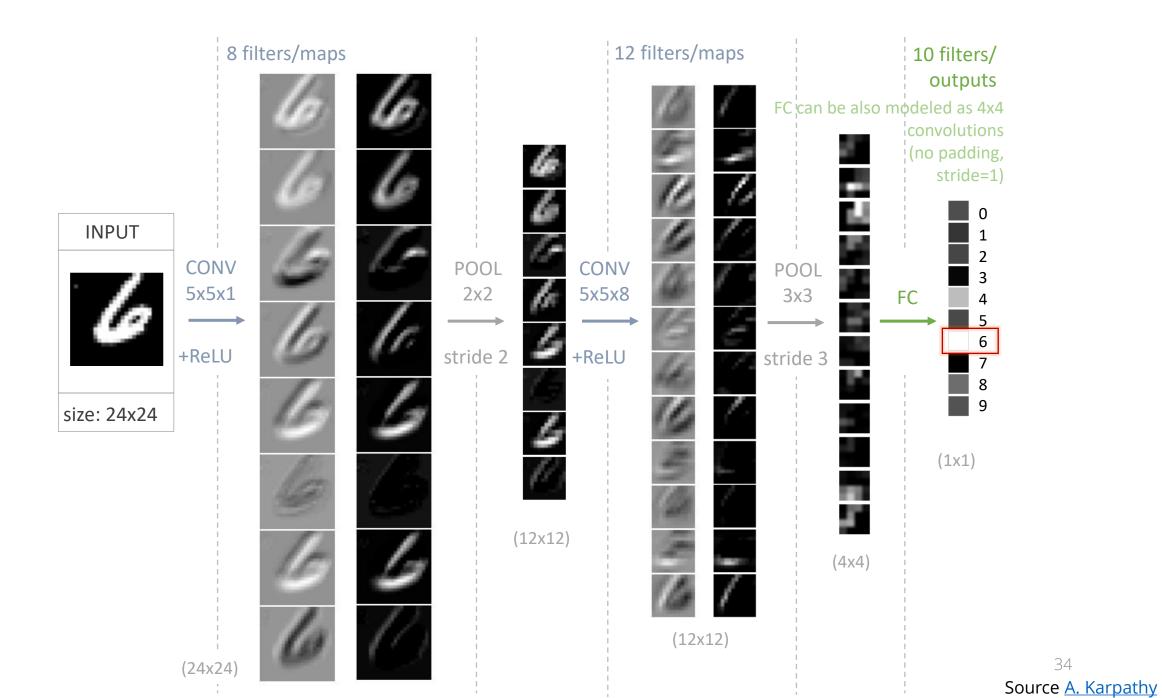
Input $h \times w \times d$ (here: $5 \times 5 \times 1$) Output $1 \times 1 \times n$ *n* being the only hyperparameter (here: n = 6)



Notice how feature maps activate on different basic structures, depending on the corresponding filter

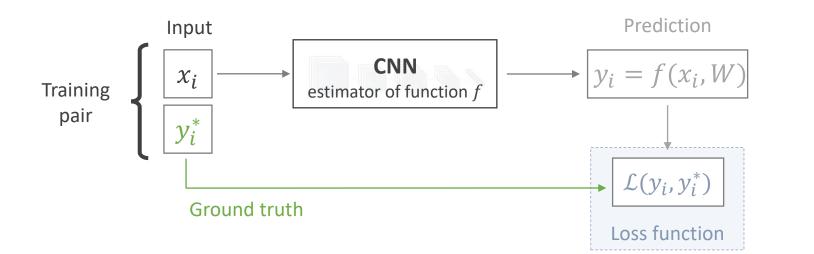


33 Source <u>A. Karpathy</u>



Loss function

- A CNN can be learned for different problems (classification or regression ones) by minimizing a specified objective, i.e. the *loss function*.
- It simply measures how well the CNN performs on the task.
- To do this, a "loss layer" receives the output of the CNN (prediction) and compares it to the ground truth of the given input.
- Stochastic Gradient Descent: the loss over the entire dataset must be written as the mean of the individual losses of the samples.



Loss function

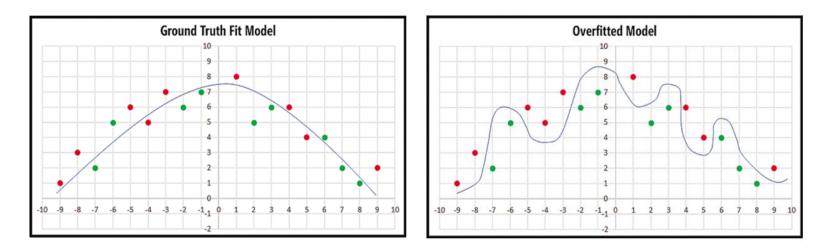
- A CNN can be learned for different problems (classification or regression ones) by minimizing a specified objective, i.e. loss function.
- It simply measures how well the CNN performs on the task.
- To do this, a "loss layer" receives the output of the CNN (prediction) and compares it to the ground truth of the given input.
- The loss over the entire dataset is (most often) the mean of the individual losses of the samples.
- Example: If our task is image classification,
 - the ground truth is the labeled category for the image
 - the prediction is a vector of scores, which represent the "probabilities" that the input belongs to each of the existing categories.

Loss function

- Classification: soft-max cross-entropy (Lecture 06)
- Regression:
 - for tasks where the output is continuous.
 - $\mathcal{L}_1(\mathbf{y}, \mathbf{y}^*) = |\mathbf{y} \mathbf{y}^*|_1 = \frac{1}{n} \sum_{i=1}^n |y_i y_i^*|$
 - $\mathcal{L}_2(\mathbf{y}, \mathbf{y}^*) = \|\mathbf{y} \mathbf{y}^*\|_2 = \frac{1}{n} \sum_{i=1}^n (y_i y_i^*)^2$
 - Note that y, y* can have arbitrary dimensions depending on the task, e.g. vectors of regressed points or entire prediction maps.
 n would then be the number of points or pixels respectively.
- Task-specific loss functions that model some known properties of the problem.

Regularization

Helps generalization to unseen data, i.e. preventing overfitting to the training samples.



In an over-fitted model, the predicted curve is not "regular" Weights have very large or very small values

Regularization

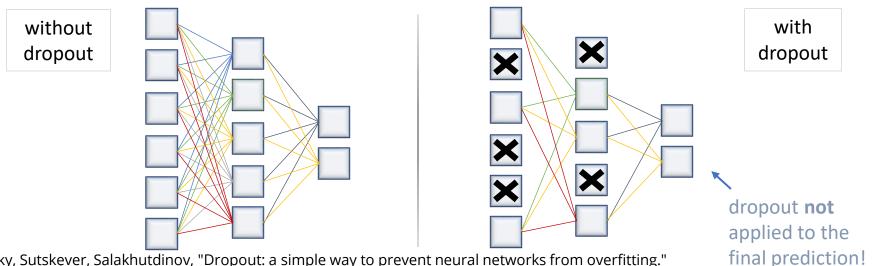
- It includes methods for better generalization to unseen data, i.e. preventing over-fitting to the training samples.
- L2 regularization

If *a* is too large, the networks tries to keep weights too small

- Penalty term: $R = \frac{1}{2}aw^2$ (the squared magnitude of all parameters) *a* is the regularization strength (typically small, e.g. order of 10^{-4})
- Favors weight "diffusion"
- Weight update through gradient descent: $w_{t+1} = w_t aw_t$ (linear decay)
- L1 regularization
 - Penalty term: R = a|w|
 - Causes weight vector to become sparse and invariant to noisy inputs

Dropout

- Randomly "dropping out" neurons of a layer (with probability p, usually 0.5) at each iteration of training
- This effectively means making them inactive (setting to zero) so that they do not contribute in forward/backward passes
- Neurons do not learn to rely on the presence of other specific neurons
- Usually applied before the last fully-connected layer(s)



Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014)

Optimization methods

For a training iteration t and the current state of parameters denoted as w_t , an update is performed as:

```
w_{t+1} = w_t + \Delta w_t
```

A variety of first-order solvers, popular for training CNNs:

- Stochastic Gradient Descent (SGD) Follow the negative gradient for a "mini-batch" of samples $\Delta w_t = -\lambda g_t$
 - Requires manual setting of learning
 - Manual annealing: decrease learning rate, if validation curve "plateaus" to prevent parameters from oscillating near local minima
- SGD with momentum Keep in memory previous weight updates $\Delta w_t = \rho \Delta w_{t-1} - \lambda g_t$
 - → Accelerates SGD progress when gradient points in the same direction as before and dampens oscillations

Adam (Adaptive Moment Estimation)

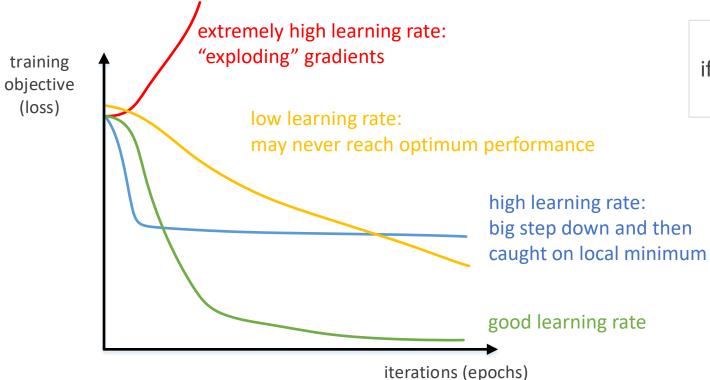
Additionally keep an exponentially decaying average of previous gradients:

$$\begin{split} m_t &= \beta_1 m_{t-1} + (1 - \beta_1) g_t \quad \Rightarrow \quad \widehat{m_t} = m_t / (1 - \beta_1^t) & \text{1st moment (mean)} \\ v_t &= \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 \quad \Rightarrow \quad \widehat{v_t} = v_t / (1 - \beta_2^t) & \text{2nd moment (variance)} \end{split} \\ \Delta w_t &= -\frac{\lambda}{\sqrt{\widehat{v_t} + \varepsilon}} m_t \\ \text{bias correction} \end{split}$$

Suggested decay: $\beta_1 = 0.9$, $\beta_2 = 0.999$. Initial averages: zeros

How to train your network

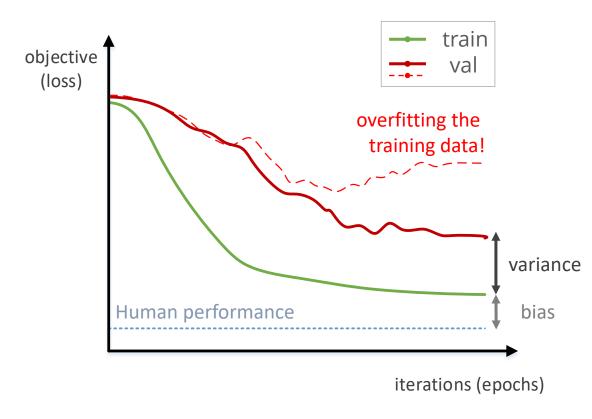
Looking for the right learning rate...



As for the validation curve, if it "**plateaus"** then decrease the learning rate

How to train your network

Validation vs Training (when data comes from the same distribution)



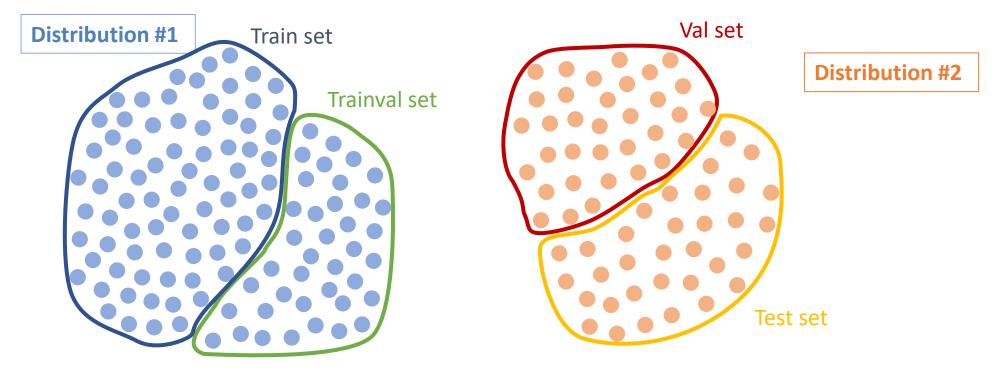
If **bias** is high: Train a bigger model or train longer

If **variance** is high: Try more data, augmentations, regularization (e.g. dropout)

If **overfitting**: Try more data or early stopping

How to train your network

When data comes from different distributions...

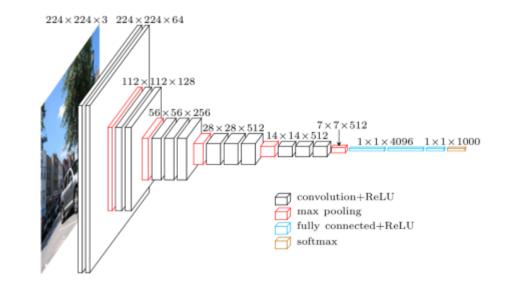


- If val error high: Get more data of distribution #2 (similar to the test scenario)
- If val error low, but test error high: Get more validation data

Architecture Example: VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan and Zisserman, 2014

- Different configurations: 11-19 layers
- 3x3 convolutions
- 3 large FC layers in the end



Architecture Example: ResNet

Deep Residual Learning for Image Recognition, K He et al., 2015

- Introduces residual connections (next lecture)
- Again: different sizes popular R18, R50, R101, R152
- Building blocks:
 - Convolution (mainly 3x3)
 - ReLU
 - Pooling
 - 1 FC layer in the end

