
Convolutional Neural 
Networks

Computer Vision – Lecture 07

1



Further Reading

• Slides from F Li and slides from M Niessner

• Slides from E Gavves

• Deep Learning Book, by G,B,C, Chapter 9

• Foundations of Computer Vision, Torralba, Isola, Freeman
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http://cs231n.stanford.edu/slides/2023/lecture_5.pdf
https://niessner.github.io/I2DL/material/Lectures/9.CNN-1.pdf
https://uvadlc.github.io/lectures/nov2016/lecture4.pdf
https://www.deeplearningbook.org/contents/convnets.html


Convolutional Filters

• We have seen many useful 
convolutional filters:
• Gaussian Blur

• Edge Filters

• Sharpening

• Laplacian of Gaussian

• Gradient Filters

• …

• They have been hand-crafted from 
equations and intuitions.
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Image Classification in 2 Steps

1. Compute image embeddings.

2. Learn a classifier on the training set.

Many different approaches

Image embeddings: FFT, BoW, HOG, Fisher Vectors, etc…

Classifiers: Linear Regression, SVMs, Kernel SVM, Random 
Forest, etc…
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Biological Motivation

Receptive fields of single neurones in the cat's striate 
cortex, D. H. Hubel and T. N. Wiesel, 1959

• Measure single neuron excitement 
in the visual cortex.

• Neurons respond to oriented 
edges
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Biological Motivation

6
video source

https://www.youtube.com/watch?v=IOHayh06LJ4


Edge “Filters”

• A individual neuron responds 
to a quite precise angle of the 
edge.

• There are neurons for every 
angle.

• Remember: SIFT Descriptor.
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Neocognitron

A neural network, inspired by Hubel and Wiesel (1959): 

• Cascaded structures: hierarchical and multi-layer

Fukushima, K. "Neocognitron: A hierarchical neural network capable of visual pattern recognition." Neural networks 1.2 (1988): 119-130.

higher order features
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Neocognitron

A neural network, inspired by Hubel and Wiesel (1959): 

• Cascaded structures: hierarchical and multi-layer

• Different types of alternating “cells”
• Simple S-cells:  

extract local features
(modifiable parameters)

• Complex C-cells:  
shift-invariance 

• Arrangement in cell-planes, 
each responding to a feature, 
i.e. local connections with 
shared set of weights

each cell with a local 
connection area

ensure tolerance 
to small shifts

of feature in the 
connection area 

Cells on one S-plane fire 
on the same feature

Each C-plane is a blurred version 
of its corresponding S-plane
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Neocognitron

Local features are gradually integrated and classified in higher 
layers:

• Basic features (edges, corners, etc.) in lower layers
• Global patterns in higher layers

Self-organizing maps:
• Initially no supervision (1980)
• Trained layer wise (1988)
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Towards CNNs

Convolutional Neural Networks (CNNs, LeCun 1989) are a category of multi-layer NNs 
with learnable weights and biases, designed such that they tackle common problems of 
ANNs. 

• Observation: Inputs are structured, e.g. images

• Key idea: Invariance to shifts, scale and small distortions using
• local weighted connections, i.e. local receptive field
• shared weights across spatial locations
• spatial sub-sampling

• Main operations: 
• Convolutions
• Non-linearities
• max ∙  functions
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CNN Architecture 

Network architecture generally composed by:

• “Filters” arranged in three dimensions: width, height and depth. 

• Alternating convolutional (followed by a non-linear activation 
function) and sub-sampling layers to produce features at 
different levels of abstraction. 

• Fully-connected layers that act as the final classifiers.

Input Output

CNN
Prediction
(e.g. dog)

Layer Layer . . .
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CNN Architecture 

• CNN architectures are generally composed of:

• “Filters” arranged in three dimensions: width, height and depth. 
• Alternating convolutional (followed by a non-linear activation 

function) and sub-sampling layers to produce features at 
different levels of abstraction. 

• Fully-connected layers that act as the final classifiers.

Sample CNN structure

G

Prediction:
Dog

Convolution Subsample Subsample Fully-connectedConvolution
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LeNet-5

• First successful modern CNN architecture 

• Introduced in 1998 for handwritten digit recognition

• Trained with back-propagation and gradient descent

LeCun et al. "Gradient-based learning applied to document recognition."
Proceedings of the IEEE 86.11 (1998): 2278-2324.
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Convolutional Layer

Main operation of CNNs

• Local Connectivity
Each neuron of a layer connects only to a local region of the previous layer (receptive 
field) and the dot product is performed between this region and the learnable weights. 

• Weight Sharing
The same weights are used for every spatial location in the input volume.

𝑓 𝑥, 𝑦 ∗ 𝑔 𝑥, 𝑦 = ෍

𝑛=−∞

+∞

෍

𝑚=−∞

+∞

𝑓 𝑛, 𝑚 ∙ 𝑔 𝑥 − 𝑛, 𝑦 − 𝑚

• Before: apply the same filter to every channel.

• Now: filters will have separate weights for every channel.
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Convolutional Layer

Input volume
(e.g. image)

learnable weights 
(parameters)

convolutional filter
ℎ × 𝑤 × 𝑑 

𝑤1
1 𝑤2

1 𝑤3
1

𝑤4
1 𝑤5

1 𝑤6
1 

𝑤7
1 𝑤8

1 𝑤9
1 

𝑤1
2 𝑤2

2 𝑤3
2

𝑤6
2

𝑤9
2

𝑤1
3 𝑤2

3 𝑤3
3

𝑤6
3

𝑤9
3

𝑑
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Convolutional Layer

Input volume
(e.g. image)

learnable weights 
(parameters)

convolutional filter
ℎ × 𝑤 × 𝑑 

Output
(feature map)

slide filter 
over input

The filter slides spatially but operates (dot product) on all dimensions

𝟏𝟎 × 𝟏𝟎 × 𝟑

𝟑 × 𝟑 × 𝟑

𝟖 × 𝟖 × 𝟏
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Convolutional Layer

Input volume
(e.g. image)

convolutional filter
ℎ × 𝑤 × 𝑑 

Output
(feature map)

zero-pad each border of the input by
ℎ − 1

2
,

𝑤 − 1

2
to retain the same size 

in the output

𝟏𝟎 × 𝟏𝟎 × 𝟑

𝟑 × 𝟑 × 𝟑

𝟏𝟎 × 𝟏𝟎 × 𝟏
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Convolutional Layer

Input volume
(e.g. image)

Output
(feature map)

set of filters 

learning multiple (different) filters → produce several feature maps → multitude of features

Output
(feature maps)
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Convolutional Layer

Learnable parameters 
i.e. the weights of the filters
 biases added afterwards

Other hyperparameters 
• spatial extend: width 𝑤, height ℎ

number of channels: depth 𝑑
• number of filters 𝑓
• Stride 𝑠 (step size) 

stride > 1 results in spatial sub-
sampling of the feature maps

• Padding 𝑝 on the input
(on every side)

Size of resulting feature maps:

ℎ𝑜𝑢𝑡 =
ℎ𝑖𝑛 − ℎ + 2𝑝

𝑠
+ 1

𝑤𝑜𝑢𝑡 =
𝑤𝑖𝑛 − 𝑤 + 2𝑝

𝑠
+ 1

where ℎ𝑖𝑛, 𝑤𝑖𝑛, ℎ𝑜𝑢𝑡, 𝑤𝑜𝑢𝑡 are the 
height and width of input and
expected output respectively

Each filter learns to activate
 on some sort of feature
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Practical Considerations

• Common filter sizes are 3 × 3, 5 × 5, etc. 
1 × 1 is also possible because it operates in depth too. 

• The third dimension 𝑑 is almost always the same as the 
number of channels in the input (but not necessarily).

• Padding does not need to be symmetric (but usually is).

• Stacking convolutions extracts features with a progressively 
higher level of abstraction.
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First Layer Filters

Krizhevsky, Sutskever, Hinton, "Imagenet classification with deep convolutional neural networks." NeurIPS 2012.

First-layer filters from AlexNet (visualization of 96  [11 × 11 × 3] filters): 

First-layer learned 
features include 
basic elements, 
such as edges, blobs, 
colors, etc.

Parameter sharing 
thus appears to be 
reasonable:  
detecting e.g. an 
edge is important at 
any position of the 
input image.
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Activation Function

• Convolutions are linear operations

• Stacking them will still only give us a linear operation.

• Add a non-linear activation function in between. 

Sigmoid: 𝜎 𝑥 =
1

1+𝑒−𝑥

Output range: [0,1]

Tanh: tanh(𝑥) = 2𝜎 2𝑥 − 1

Output range: [-1,1]

These functions saturate, making gradients very small → learning is very difficult. 
24



Rectified Linear Unit (ReLU)

• Simply thresholds at zero

• Sparse activation

• Computationally efficient

• Non-saturating → speeds up convergence
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Rectified Linear Unit (ReLU)

𝑓 𝑥 = max 0, 𝑥

derivative = 1

derivative = 0



Other Activation Functions

image source
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https://www.v7labs.com/blog/neural-networks-activation-functions


Pooling Layers

• Idea: reduce the resolution to understand content at 
different scales.

• Idea: reduce the resolution to save computations.

• Performs an element-wise operation on the feature maps in 
a local region, on each channel independently. 

• Usually: 𝐦𝐚𝐱 ∙  or 𝐚𝐯𝐠 ∙ .
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Max-Pooling Example

max value within the window

Example: Max-pooling

The window size is 2 × 2,
applied with a stride of 2
(common case)
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Pooling Layer

• Parameter-free layer 

• Used for feature map spatial sub-sampling (with stride > 1).

• Controls the capacity of the network by reducing the resolution.

• Introduces some invariance to small transformations of the input, 
because precise spatial information is lost. 

• Hyperparameters: 
• width 𝑤 and height ℎ of window
• stride 𝑠

overlapping of sliding window
occurs if 𝑠 < 𝑤 𝑜𝑟 𝑠 < ℎ

Size of resulting pooled maps:

ℎ𝑜𝑢𝑡 =
ℎ𝑖𝑛 − ℎ

𝑠
+ 1

 

𝑤𝑜𝑢𝑡 =
𝑤𝑖𝑛 − 𝑤

𝑠
+ 1
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Fully Connected Layer

• Fully-connected layers follow the principle of the typical ANN 
weighted connections: each neuron in the output connects to all 
neurons of the input.

• Usually added as the last layers of the network / output layer.

• Implemented as a linear function, plus bias, followed by a non-
linearity.

• Guarantee a full receptive field.
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Fully Connected Layer

Input ℎ × 𝑤 × 𝑑
(here: 5 × 5 × 1)

Output 1 × 1 × 𝑛
𝑛 being the only hyperparameter
(here: 𝑛 = 6)

Can be also seen as a 
convolutional layer with a 
set of filters of the same 
size as the input volume, 
i.e. 𝑛 filters of size ℎ × 𝑤 × 𝑑 

FC
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Source A. Karpathy 

CONV 
5x5x1

+ReLU

8 filters/maps

size: 24x24

INPUT

(24x24)

Notice how feature maps 
activate on different basic 

structures, depending on the 
corresponding filter 
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html


CONV 
5x5x1

+ReLU

POOL 
2x2

stride 2

8 filters/maps

size: 24x24

INPUT

(24x24)

(12x12)

spatial sub-sampling by 2
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Source A. Karpathy 

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html


CONV 
5x5x1

+ReLU

POOL 
2x2

stride 2

8 filters/maps

size: 24x24

INPUT

CONV 
5x5x8

+ReLU

12 filters/maps

POOL 
3x3

stride 3

(24x24)

(12x12)

(12x12)

(4x4)

FC

10 filters/
outputs

(1x1)

0
1
2
3
4
5
6
7
8
9

FC can be also modeled as 4x4 
convolutions
(no padding, 

stride=1)
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Loss function

• A CNN can be learned for different problems (classification or regression ones) by 
minimizing a specified objective, i.e. the loss function. 

• It simply measures how well the CNN performs on the task.

• To do this, a “loss layer” receives the output of the CNN (prediction) and compares it 
to the ground truth of the given input.

• Stochastic Gradient Descent: the loss over the entire dataset must be written as the 
mean of the individual losses of the samples. 

𝑥𝑖 𝑦𝑖 = 𝑓(𝑥𝑖 , 𝑊)

𝑦𝑖
∗

CNN
estimator of function 𝑓

ℒ(𝑦𝑖 , 𝑦𝑖
∗)

Training 
pair 

Input

Ground truth

Prediction

Loss function
35



Loss function

• A CNN can be learned for different problems (classification or 
regression ones) by minimizing a specified objective, 
i.e. loss function. 

• It simply measures how well the CNN performs on the task.

• To do this, a “loss layer” receives the output of the CNN (prediction) 
and compares it to the ground truth of the given input.

• The loss over the entire dataset is (most often) the mean 
of the individual losses of the samples. 

• Example:
If our task is image classification, 
• the ground truth is the labeled category for the image
• the prediction is a vector of scores, which represent the “probabilities” that the 

input belongs to each of the existing categories. 
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Loss function

• Classification: soft-max cross-entropy (Lecture 06)

• Regression:
• for tasks where the output is continuous.

• ℒ1 𝒚, 𝒚∗ = 𝒚 − 𝒚∗
1 =

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − 𝑦𝑖
∗  

• ℒ2 𝒚, 𝒚∗ = 𝒚 − 𝒚∗
2 =

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − 𝑦𝑖
∗ 2

• Note that 𝒚, 𝒚∗ can have arbitrary dimensions depending on the task, e.g. 
vectors of regressed points or entire prediction maps. 
𝑛 would then be the number of points or pixels respectively. 

• Task-specific loss functions that model some known properties of 
the problem.
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Regularization

Helps generalization to unseen data, i.e. preventing over-
fitting to the training samples. 

In an over-fitted model, the predicted curve is not “regular”
Weights have very large or very small values

https://msdn.microsoft.com/en-us/magazine/dn904675.aspx
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Regularization

• It includes methods for better generalization to unseen data, i.e. preventing 
over-fitting to the training samples. 

• L2 regularization

• Penalty term:  𝑅 =
1

2
𝑎𝑤2 (the squared magnitude of all parameters) 

𝑎 is the regularization strength (typically small, e.g. οrder of 10−4)
• Favors weight “diffusion” 
• Weight update through gradient descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝑎𝑤t  

(linear decay)

• L1 regularization

• Penalty term: 𝑅 = 𝑎 𝑤
• Causes weight vector to become sparse and invariant to noisy inputs

If 𝑎 is too large, the networks 
tries to keep weights too small 
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Dropout

• Randomly “dropping out” neurons of a layer 
(with probability 𝑝, usually 0.5) at each iteration of training

• This effectively means making them inactive (setting to zero) so that 
they do not contribute in forward/backward passes

• Neurons do not learn to rely on the presence of other specific neurons

• Usually applied before the last fully-connected layer(s)

Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting."
Journal of Machine Learning Research 15.1 (2014)

without 
dropout

with 
dropout

dropout not 
applied to the
final prediction! 40



Optimization methods

For a training iteration 𝑡 and the current state of parameters denoted 
as 𝑤𝑡, an update is performed as:

𝑤𝑡+1 = 𝑤𝑡 + Δ𝑤t

A variety of first-order solvers, popular for training CNNs: 

• Stochastic Gradient Descent (SGD) 
Follow the negative gradient for a “mini-batch” of samples   Δ𝑤𝑡 = −𝜆𝑔𝑡

• Requires manual setting of learning 

• Manual annealing: decrease learning rate, if validation curve “plateaus”
to prevent parameters from oscillating near local minima

• SGD with momentum
Keep in memory previous weight updates Δ𝑤𝑡 = 𝜌Δ𝑤𝑡−1  − 𝜆𝑔𝑡 

• → Accelerates SGD progress when gradient points in the same 
direction as before and dampens oscillations

Rumelhar, Hinton, Williams, "Learning representations by back-propagating errors." Nature 323 (1986): 533-536.
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Adam (Adaptive Moment Estimation)

Additionally keep an exponentially decaying average of 
previous gradients:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + 1 − 𝛽1 𝑔𝑡 →    ෞ𝑚𝑡 = Τ𝑚𝑡 1 − 𝛽1
𝑡  

𝑣𝑡  = 𝛽2𝑣𝑡−1  + 1 − 𝛽2 𝑔𝑡
2 →   ෞ 𝑣𝑡  =  Τ𝑣𝑡 1 − 𝛽2

𝑡  

Suggested decay: 𝛽1 = 0.9, 𝛽2 = 0.999.  

Initial averages: zeros

Kingma and Ba. "Adam: A method for stochastic optimization." ICLR‘15.

bias correction

Δ𝑤𝑡 = −
𝜆

ෝ𝑣𝑡 + 𝜀
𝑚𝑡

1st moment (mean)
2nd moment (variance)
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How to train your network

Looking for the right learning rate… 

As for the validation curve, 
if it “plateaus” then decrease 

the learning rate

extremely high learning rate:
“exploding” gradients

low learning rate:
may never reach optimum performance

high learning rate:
big step down and then 
caught on local minimum

good learning rate

iterations (epochs)

training 
objective

(loss)
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How to train your network

Validation vs Training (when data comes from the same 
distribution)
 

iterations (epochs)

objective
(loss)

Human performance

overfitting the 
training data!

train
val

bias

variance

If bias is high:
Train a bigger model 
or train longer

If variance is high:
Try more data, 
augmentations, 
regularization (e.g. dropout)

If overfitting:
Try more data or 
early stopping 

iterations (epochs)

objective
(loss)
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How to train your network

When data comes from different distributions… 

• If val error high:  Get more data of distribution #2 (similar to the test scenario)
• If val error low, but test error high: Get more validation data

Train set

Trainval set

Distribution #1 Val set

Test set

Distribution #2
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Architecture Example: VGG

Very Deep Convolutional Networks for Large-Scale Image 
Recognition, Simonyan and Zisserman, 2014

• Different configurations: 
11-19 layers

• 3x3 convolutions

• 3 large FC layers in the end
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Architecture Example: ResNet

Deep Residual Learning for Image Recognition, K 
He et al., 2015

• Introduces residual connections (next lecture)

• Again: different sizes 
popular R18, R50, R101, R152

• Building blocks:
• Convolution (mainly 3x3)
• ReLU
• Pooling
• 1 FC layer in the end
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