Transformers

Computer Vision - Lecture 08

Further Reading

e Slides from F Li

* Slides from] Johnson

e Slides from M Niessner

+ None of the books | know contains transformers.
Foundations of Computer Vision covers transformers

http://cs231n.stanford.edu/slides/2023/lecture_9.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf
https://niessner.github.io/I2DL/material/Lectures/11.RNN.pdf

Accuracy [%]

CNNs to Transformers

An image is worth 16x16 words: Transformers for image
recognition at scale, A Dosovitskiy et al., 2021

mEm ViT-H/14 msm BiT-L (R152x4) = VIVI-Ex-100% (R50x3) mmmm S4L (R50x1)

88
80 85 60
70
i " HNEE B

VTAB (19 tasks) Natural (7 tasks) Specialized (4 tasks) Structured (8 tasks)

Attention

Attention Is All You Need, A Vaswani et
al., 2017 (100k citations now)

« Before: main building block is a
convolution.

 After: main building block is multi-
head attention.

Output
Probabilities
r ™
Add & Norm Je=
Feed
Forward
g
[_Add & Norm | .
ettt il Multi-Head
Feed Attention
Forward 7 g) Nx
- 1
Nix Add & Norm Je—
(—“l Add & Norm | Macked
Multi-Head Multi-Head
Attention Attention
At 4 At 4
o J W,
Positional & ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

1D Attention

« Attention was first developed for natural language
processing.

« Used to process a sequence of tokens (e.g. words).
 Each token is embedded into a vector space.

* |[dea: long-range context is important.

1D Attention

Example machine translation:

e Languages tend to vary in
word order.

 The model cannot translate
word-by-word but must be
able to look at all words.

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

agreement
European
Economic

CIJ
L
—

on
the

|
accord

sur

la

zone
économique
européenne
a

été

signé

en

aodt

1992

<end>

Area

was

go; I A
) o S o ©
C (@) lle) -
o 3 O v
n S < ~ V

Slide adapted from | Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1D Attention

Example machine translation:

« English: “The agreement on
the European Economic Area
was signed in August 1992."

* French: “l'accord sur la zone
economique européenne a
eté signé en aout 1992. "

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

agreement
European
Economic

CIJ
L
—

on
the

|
accord

sur

la

zone
économique
européenne
a

été

signé

en

aodt

1992

<end>

Area

was

go; I A
) o S o ©
C (@) lle) -
o 3 O v
n S < ~ V

Slide adapted from | Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1-to-1 matching in word order

: 2 5)

1D Attention

ES5§E£E2 828332 .V
.
Example machine translation: accord
sur
la
« English: “The agreement on o eone
the European Economic Area oo™
- i " europeenne
was signed in August 1992, a
été
signé
» French: “l'accord sur la zone en
economique européenne a aott

eté signé en aout 1992." o

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from | Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1-to-1 matching in word order

: - .

1D Attention

ES5§E£E2 828332 .V
z
Example machine translation: accord
sur
la
« English: “The agreement on o eone
the économique
]) " européenne
was signed in August 1992, a
été
signé
* French: “l'accord sur la en
3 aolt
1992

eté signé en aout 1992."

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from | Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1-to-1 matching in word order

- : g € y

1 D AttenUOH different number of words é o S % S E %8 T/f:\’

ESSs28%2ac32 .V
!
Example machine translation: accord
sur
la
« English: “The agreement on oome
the econor,lnlque
. . europeenne
was signed in August 1992." a
été
signé
* French: “l'accord sur la en
3 ao(t
1992

eté signe en aolt 1992. "

<end>

/

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Attention Slide adapted from | Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Setup for attention

Input: sentence to transla '
P te Laccord 1932 Output: sequence of

sur
Input: sequence of : : : tokens, e.g. each with a
tokens that should : - - probability distribution
predict the words of the over words

translation

input token 1 output token 1

input token 2 output token 2

Attention

input token N output token N

11

Input/Output Behaviour

« N input tokens x; € R?
* M “condition” tokens z; € R4
- Predict: N output tokens y; € R?

- We assume all vectors are in R¢, if not a linear layer can fix it.
 Similar to convolution, many of these layers can be stacked.

« Example translation: we can add a final linear layer that
maps each output token to word probabilities (use softmax)

Attention

« Each input token is processed in the same way:
y; = Attn(x;,Z) - analyse only one for now.

- Intuition: x; looks at all z; and decide what is relevant.

M

Attention

« We do this by introducing three functions:
« A query function Q: R -» R
« A key function K: R -» R
« A value function V: R% - R4

* They are used like this:

* q; = Q(x;)
. ki = K(z)
v = V) B -

« Naming: we will use queries to find keys and retrieve values. .

Attention

« Compute similarities between keys and values using a dot
product.

e Intuition: large if key is similar to query.

1

_ T
ei,j = %ql k] eER

15

Attention

- Intuition: interpret e; ; as weights to combine their values v;.
* Problem: e; ; € R, unbounded

- Solution: a; ; = softmax;(e; 1, ..., € p)

* Normalises: 0 < q;; <1

» Weightssumto 1: XL a;; = 1

1M

“
W)
iy
\S)
-“
=

a1 a2 1M

16

Attention

We can now compute the output as the weighted sum of
value?/lz

Vi = z Ai,jVj

j=1

* a; ; are the attention weights.

A -
a1V + ai2V; + +

Attention Weights

=

) c v

c o € - A

Q o O o 0

) o € m© Q J N b=
U o Q)L_Ommc O O c
-C@C_CDULM_QC:JO\)
 © O v W w < =2 n & <« ~ \"

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

ao(t

1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Attention (to) Details

* The three functions for query, key, and value are linear
functions, of appropriately sized matrices.
 Query function Q(x) = Qx
 Key function K(z) = Kz
* Value function V(z) = Vz

* All operations (except softmax) can be implemented by
matrix-vector (or tensor) products: fast.

T
Attn(Q, K, V) = softmax (%) V

* Attention is loermutation-equivariant: changing the order of
inputs x; will simply change the order of outputs y;.

Attention (to) Details

« Permutation equivariance is sometimes unwanted: e.g.
word-order matters in NLP.

* |[dea: add a signal to the inputs, that identifies the order:
x; = x; + P(i)

« P:N - R? can be simply learned by the network, or
handcrafted:

e.g. combining sin and cos frequencies sampled at i.

Attention

What if we do not have a conditional task?

21

Self-Attention

We simply predict the keys and values also from the input.

22

(Self-)Attention

« Without positional encoding: permutation invariant.
« Complexity: O(N?) in the number of input tokens.
« What to pay attention to is learned automatically.

e Attention is thus somewhat interpretable (Lecture 09).

Multi-Head (Self-)Attention

Similar to convolutions, by applying several different filters per
layer, we can use multiple SA heads simultaneously.

yM = SAttn(KWx, VWx, QWx), 1<h<H
- Each attention head has its own weights KW, v, @),
- Results are combined with a linear projection W € R#4%4,

- By stacking all outputs: y = W[y y(2) ...y(H)]T

Transformer

* Built from several transformer blocks.

e Each block contains:

Multi-Head Attention.
Residual connection y = x + MHA(x).
Normalisation.

Feed forward (fully connected) layer
(operates per token).

N x

Add & Norm

Feed
Forward

A

Add & Norm

Multi-Head
Attention

t

Residual Connections

* |[dea: y = f(x) means that f needs to learn to pass on all
necessary information to the following layer.

* [t can be easier to only learn the changes in the
representation: y = f(x) + x.

e Bonus: gradients flow much easier through the network.

e Residual blocks are now in almost all architectures CNNs and
Transformers alike.

Normalisation

« Consider a single linear layer with ReLU
y = max(0, Wx + b).

« After initialisation with random (normal) noise, W and b can
sometimes be hard to learn.

« For example:
* If x are very close to 0, W needs to be very large.
* If x is very negative -> large b to avoid 0 gradient from RelLU.
* Etc.

* ldea: just normalise x so that it is “well-behaved” for optimisation.

Normalisation

* Typical training happens in mini-batches where we pass B
samples through the model together.

« Gradients are computed using the full batch.
« More stable than using only a single sample.
« Much faster than computing the gradient using the whole dataset.

e Let's use the batch statistics to normalise outputs of layers!

Batch-Normalisation

loffe and Szegedy, 2015
e Input: x € RB*4 (a batch of B vectors in R%)

- Output: y = BN(x) € RB*d

- Mean: = Zl 1% ERY
» Variance: Z _1(x; —w)? € RA
- Normalisation: x{,j e — (X1 — 1))

J
» Learnable (y, 8 € R%) rescaling: y;; = vjx;; + B

Batch-Normalisation

 Learning y = ¢4, B = u turns BN into an identity function.

- Usually requires reasonably sized batches to compute stable
statistics.

« Depends on training statistics! For testing: use fixed statistics
(exponential moving average) from train-set.

 Usually: after Fully Connected or Convolutional layers, and
before nonlinearity.

e |dea: ReLU will 0-out about 50% activations.

Batch-Normalisation

* Makes deep networks much easier to train.

* Improves gradient flow.

* Allows higher learning rates, faster convergence.
» Networks become more robust to initialization.
 Acts as regularization during training.

e Zero overhead at test-time: statistics are fixed and can be fused
with previous layer!

« Behaves differently during training and testing: very common
source of bugs!

Slide from F Li

http://cs231n.stanford.edu/slides/2023/lecture_6.pdf

Other Normalisation Layers

N NN)
TR R
AN NNN\Z
LV T TR

Group Norm

VAN AW
LT

M'H
R

Instance Norm

R EEE
R TR Y
AANNN\N\Z
R

Layer Norm

Batch Norm

32

Wu and He, “Group Normalization”, ECCV 2018

Creativity of CV Researchers

« “Show, attend, and tell” (Xu et al., ICML 2015)
Look at image, attend to image regions, produce queston

« “Ask, attend, and answer” (Xu and Saenko, ECCV 2016)
“Show, ask, attend, and answer” (Kazemi and Elqursh, 2017)

Read text of question, attend to image regions, produce answer
« “Listen, attend, and spell” (Chan et al., ICASSP 2016)
Process raw audio, attend to audio regions while producing text
« “Listen, attend, and walk” (Mei et al., AAAI 2016)
Process text, attend to text regions, output navigation commands
« “Show, attend, and read"” (Li et al., AAAI 2019)
Process image, attend to image regions, output text
* “Show, attend, and interact” (Qureshi et al., ICRA 2017)
Process image, attend to image regions, output robot control commands

Slide adapted from | Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Vision Transformers

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, A Dosovitskiy et al., 2021

e Splitimage into 16x16 patches.
A linear layer that maps each patch to a vector (token).
« Add 2D positional encoding.

- Add one extra token to the sequence of 256. This token will in
the end map to the class distribution.

 Train a transformer on sequences of length 257.

Vision Transformer

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

|
- -ﬁ) D80

* Extra learnable
[class] embedding Llnear ij ection Df Flartf:ned Patcheq

|
l H%“ ﬁ E W

Transformer Encoder

l: ,

MLP |
Norm |

[Multi-Head |

. Attention J

r Norm |

| Embedded
Patches

35

Vision Transformer

e Still seems to learn RGB embedding filters
reasonable “filters” in the (first 28 principal components)
first layer. ===zl]

 Trained with ADAM
optimiser.

Tricks

« Checkpoint averaging
 Residual dropout
 Label smoothing

Attention Visualisation

 Attention weights are single scalars
per token than sum to 1.

« We can visualise them as a heat-map
and overlay them over the image.

« Seems to align with human intuition
about what is important in an image.

Input Attention

Positional Encoding

* ViT learns the positional
encoding from scratch,
instead of hand-crafting it.

* The learned embeddings
have a strong local similarity.

* They can thus identify where
a token comes from in the
Image.

Position embedding similarity

s 111111
SN
s il i N

(%)

(@)
a 111

Input patch row
N

~
d 11
g 11
- i O N B3
- NN
- BN
o L1L1

Input patch column

33

1

Cosine similarity

Data

-

* ViTs benefit from very large

X

a

datasets. s
%ﬂ /_’,/,4 ®

« BiT is a CNN (ResNet). R

2

40
o . =] ViT-L/16 -e-ViT-B/32 ResNet50x1 (BiT)
Transter lea,rnmg becomes g] ViT-L/32 -*-ViT-b/32 -®ResNet152x2 (BiT)
even more important! 4301 - —

10 M 30M 100 M 300 M

Number of JFT pre-training samples

39

Transfer Learning

* Train on a large dataset for some (related) task.
* Then fine-tune on your task that has less data.

 Fine-tuning usually with a lower learning rate or some layers
frozen.

* Intuition: learned weights for another task often still much
better than random initialisation.

 Evidence: first layer filters almost always look the same.

The Encoder-Decoder Transformer

o™~

H

i

=)

O

>
' (Self-Attention
Ny)
(-;(Add & Normalize

z; E (Feed Forward) (Feed Forward

0 Yeeeemena- $----ecmeieeeeea 4

% :.y(x Add & Normalize .
E (Self-Attention
NSy 7 V. 3

POSITIONAL
ENCODING

x+ [T

Thinking

e

Machines

(Softmax
7)
(Linear
., 4
Ty DECODER #2
$ $
:"(Add & Normalize)
+H 1
E . (Feed Forward) (Feed Forward)
Of et | S elddaleletetets $
o :"(Add & Normalize)
: R R
"":"(Encoder-Decoder Attention)
A ST IE I IIIY 3
,»(Add & Normalize)
" 4 /)
; (Self-Attention)

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

ENCODER #1

J

POSITIONAL
ENCODING
x¢ EIEET
Thinking

&

yo i I |
Machines

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

3
&
Encoder self-attention S
All tokens interact with each other —— (Self-Attention)
A A
_ [(TIT] [(T11])
POSITIONAL é é
ENCODING
x1 T x [

Thinking Machines

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

z1 [z>
4 Add & Normalize 4
Residual connection & o
Layer normalization vl g LayerNorm(+)
8 : ED [EED
(] 1
. . Zl 4
All tokens interact with each other —— : (Self-Attention)
! Y Y
k. I I I e _LLT] /
POSITIONAL é é
ENCODING
x¢ LT yoy i I
Thinking Machines

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

MLPs independently on each token
(no interaction)

Residual connection &

Layer normalization

All tokens interact with each other

v

ENCODER #1

-

 —

-

(.

A A \
(Feed Forward) (Feed Forward)
A A
z: N z>
A A
. LayerNorm(+)
A A
(Self-Attention)
A A
...... I e I -
POSITIONAL é é
ENCODING
x1 B yo i I |
Thinking Machines

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

MLPs independently on each token
(no interaction)

Residual connection &

Layer normalization

All tokens interact with each other

v

 —

ENCODER #1

-

-

&+
1
1
|
|
I

(.

»(

Add & Normalize) \

(Feed Forward) (Feed Forward)

........ L SRR RRRRIRIRIRY |
z: N z>
A A
. LayerNorm(+)
A A
(Self-Attention)
A A
...... Lo xelLIT] J
POSITIONAL é é
ENCODING
x1 B yo i I |
Thinking Machines

Image source

https://jalammar.github.io/illustrated-transformer/

Decoder block

e Similar to encoder block

* Input tokens are pre-
defined/learned

 Encoder-Decoder attention

« Queries Q from the output of the
previous layer of the decoder

« Keys K and values V from the
output of the encoder

. EveryJaosition in the decoder
attends over
all positions in the input sequence

e Often also called “cross attention”

Softmax)
7)
Linear)
A
NS
§ §
*(Add & Normalize)
(Feed Forward) (Feed Forward)
............................ ’
*(Add & Normalize)
i i
’(Encoder-Decoder Attention)
--------- %
o(Add & Normalize)
R R
(Self-Attention)

ConvNeXt? - Probably not

A ConvNet for the 2020s, Liu et al., 2022

ImageNet-1K Acc.
90

* Main changes:
« Grouped convolutions
ConvNeXt

o Wlder network 86 Swin Transformer
. (2021)
(more filters per layer) . . ’

ResMet (2020)

88

(2015)

82 @

« So far: O
transformers still dominant.

[02]

78 ImageNet-1K Trained

ConvNeXt
Swin Transformer
ViT (2021)
(2020)
| |
4 8 16 285 GFLOPs

ImageNet-22K Pre-trained

48

	Slide 1: Transformers
	Slide 2: Further Reading
	Slide 3: CNNs to Transformers
	Slide 4: Attention
	Slide 5: 1D Attention
	Slide 6: 1D Attention
	Slide 7: 1D Attention
	Slide 8: 1D Attention
	Slide 9: 1D Attention
	Slide 10: 1D Attention
	Slide 11: Setup for attention
	Slide 12: Input/Output Behaviour
	Slide 13: Attention
	Slide 14: Attention
	Slide 15: Attention
	Slide 16: Attention
	Slide 17: Attention
	Slide 18: Attention Weights
	Slide 19: Attention (to) Details
	Slide 20: Attention (to) Details
	Slide 21: Attention
	Slide 22: Self-Attention
	Slide 23: (Self-)Attention
	Slide 24: Multi-Head (Self-)Attention
	Slide 25: Transformer
	Slide 26: Residual Connections
	Slide 27: Normalisation
	Slide 28: Normalisation
	Slide 29: Batch-Normalisation
	Slide 30: Batch-Normalisation
	Slide 31: Batch-Normalisation
	Slide 32: Other Normalisation Layers
	Slide 33: Creativity of CV Researchers
	Slide 34: Vision Transformers
	Slide 35: Vision Transformer
	Slide 36: Vision Transformer
	Slide 37: Attention Visualisation
	Slide 38: Positional Encoding
	Slide 39: Data
	Slide 40: Transfer Learning
	Slide 41: The Encoder-Decoder Transformer
	Slide 42: Encoder block
	Slide 43: Encoder block
	Slide 44: Encoder block
	Slide 45: Encoder block
	Slide 46: Encoder block
	Slide 47: Decoder block
	Slide 48: ConvNeXt? – Probably not

