
Transformers
Computer Vision – Lecture 08

1

Further Reading

• Slides from F Li

• Slides from J Johnson

• Slides from M Niessner

• None of the books I know contains transformers.
Foundations of Computer Vision covers transformers

2

http://cs231n.stanford.edu/slides/2023/lecture_9.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf
https://niessner.github.io/I2DL/material/Lectures/11.RNN.pdf

CNNs to Transformers

An image is worth 16x16 words: Transformers for image
recognition at scale, A Dosovitskiy et al., 2021

3

Attention

Attention Is All You Need, A Vaswani et
al., 2017 (100k citations now)

• Before: main building block is a
convolution.

• After: main building block is multi-
head attention.

4

1D Attention

• Attention was first developed for natural language
processing.

• Used to process a sequence of tokens (e.g. words).

• Each token is embedded into a vector space.

• Idea: long-range context is important.

5

1D Attention

Example machine translation:

• Languages tend to vary in
word order.

• The model cannot translate
word-by-word but must be
able to look at all words.

6
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1D Attention

Example machine translation:

• English: “The agreement on
the European Economic Area
was signed in August 1992.”

• French: “L’accord sur la zone
économique européenne a
été signé en août 1992. ”

7
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1D Attention

Example machine translation:

• English: “The agreement on
the European Economic Area
was signed in August 1992.”

• French: “L’accord sur la zone
économique européenne a
été signé en août 1992. ”

8
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

1-to-1 matching in word order

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1D Attention

Example machine translation:

• English: “The agreement on
the European Economic Area
was signed in August 1992.”

• French: “L’accord sur la zone
économique européenne a
été signé en août 1992. ”

9
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

1-to-1 matching in word order

reverse word order

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

1D Attention

Example machine translation:

• English: “The agreement on
the European Economic Area
was signed in August 1992.”

• French: “L’accord sur la zone
économique européenne a
été signé en août 1992. ”

10
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

1-to-1 matching in word order

reverse word order

different number of words

Attention

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Setup for attention

11

Input: sentence to translate

𝑧1

L’accord

𝑧2

sur

𝑧𝑀

1992

…

𝑥1input token 1

input token 2

input token 𝑁

…

Attention

output token 1

output token 2

output token 𝑁

…

Input: sequence of
tokens that should
predict the words of the
translation

Output: sequence of
tokens, e.g. each with a
probability distribution
over words

𝑥2

𝑥N

𝑦1

𝑦2

𝑦N

Input/Output Behaviour

• 𝑁 input tokens 𝑥𝑖 ∈ ℝ𝑑

• 𝑀 “condition” tokens 𝑧𝑗 ∈ ℝ𝑑

• Predict: 𝑁 output tokens 𝑦𝑖 ∈ ℝ𝑑

• We assume all vectors are in ℝ𝑑, if not a linear layer can fix it.

• Similar to convolution, many of these layers can be stacked.

• Example translation: we can add a final linear layer that
maps each output token to word probabilities (use softmax)

12

Attention

• Each input token is processed in the same way:

 𝑦𝑖 = 𝐴𝑡𝑡𝑛(𝑥𝑖 , 𝑍) – analyse only one for now.

• Intuition: 𝑥𝑖 looks at all 𝑧𝑗 and decide what is relevant.

13

𝑧1 𝑧2 𝑧𝑀

…

𝑥1
𝑦1

Attention

• We do this by introducing three functions:
• A query function 𝑄: ℝ𝑑 → ℝ𝑑

• A key function K: ℝ𝑑 → ℝ𝑑

• A value function V: ℝ𝑑 → ℝ𝑑

• They are used like this:
• 𝑞𝑖 = 𝑄(𝑥𝑖)

• 𝑘𝑗 = 𝐾(𝑧𝑖)

• 𝑣𝑗 = 𝑉(𝑧𝑖)

• Naming: we will use queries to find keys and retrieve values.14

𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…

Attention

• Compute similarities between keys and values using a dot
product.

• Intuition: large if key is similar to query.

𝑒𝑖,𝑗 =
1

√𝑑
𝑞𝑖

𝑇𝑘𝑗 ∈ ℝ

15

𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…

𝑒11 𝑒12 𝑒1𝑀

Attention

• Intuition: interpret 𝑒𝑖,𝑗 as weights to combine their values 𝑣𝑗.

• Problem: 𝑒𝑖,𝑗 ∈ ℝ, unbounded

• Solution: 𝑎𝑖,𝑗 = softmaxj(𝑒𝑖,1, … , 𝑒𝑖,𝑀)

• Normalises: 0 ≤ 𝑎𝑖,𝑗 ≤ 1

• Weights sum to 1: σ𝑗=1
𝑀 𝑎𝑖,𝑗 = 1

16

𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…

𝑒11 𝑒12 𝑒1𝑀

𝑎11 𝑎12 𝑎1𝑀

Attention

We can now compute the output as the weighted sum of
values:

𝑦𝑖 = ෍

𝑗=1

𝑀

𝑎𝑖,𝑗𝑣𝑗

• 𝑎𝑖,𝑗 are the attention weights.

17

𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…

𝑒11 𝑒12 𝑒1𝑀

𝑎11 𝑎12 𝑎1𝑀

𝑎11𝑣1 𝑎12𝑣2 𝑎1𝑀𝑣𝑀 𝑦1+ + + =

Attention Weights

18
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Attention (to) Details

• The three functions for query, key, and value are linear
functions, of appropriately sized matrices.
• Query function 𝑄 𝑥 = 𝑸𝑥
• Key function K 𝑧 = 𝑲𝑧
• Value function V 𝑧 = 𝑽𝑧

• All operations (except softmax) can be implemented by
matrix-vector (or tensor) products: fast.

Attn 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

√𝑑
𝑉

• Attention is permutation-equivariant: changing the order of
inputs 𝑥𝑖 will simply change the order of outputs 𝑦𝑖 .

19

Attention (to) Details

• Permutation equivariance is sometimes unwanted: e.g.
word-order matters in NLP.

• Idea: add a signal to the inputs, that identifies the order:
𝑥𝑖

′ = 𝑥𝑖 + 𝑃(𝑖)

• 𝑃: ℕ → ℝ𝑑 can be simply learned by the network, or
handcrafted:
e.g. combining sin and cos frequencies sampled at 𝑖.

20

Attention

What if we do not have a conditional task?

21

𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1 …𝑎11𝑣1 𝑎12𝑣2 𝑎1𝑀𝑣𝑀 𝑦1+ + + =

𝑥2 𝑞2 𝑦2

𝑥N 𝑞N 𝑦N

… …

…𝑎21𝑣1 𝑎22𝑣2 𝑎2𝑀𝑣𝑀+ + + =

…𝑎𝑁1𝑣1 𝑎𝑁2𝑣2 𝑎𝑁𝑀𝑣𝑀+ + + =

Self-Attention

We simply predict the keys and values also from the input.

22

𝑥1

𝑘1 𝑘2 𝑘𝑁𝑣1 𝑣2 𝑣𝑁

𝑞1 …𝑎11𝑣1 𝑎12𝑣2 𝑎1𝑁𝑣𝑁 𝑦1+ + + =

𝑥2 𝑞2 𝑦2

𝑥N 𝑞N 𝑦N

… …

…𝑎21𝑣1 𝑎22𝑣2 𝑎2𝑁𝑣𝑁+ + + =

…𝑎𝑁1𝑣1 𝑎𝑁2𝑣2 𝑎𝑁𝑁𝑣𝑁+ + + =

(Self-)Attention

• Without positional encoding: permutation invariant.

• Complexity: 𝒪(𝑁2) in the number of input tokens.

• What to pay attention to is learned automatically.

• Attention is thus somewhat interpretable (Lecture 09).

23

Multi-Head (Self-)Attention

Similar to convolutions, by applying several different filters per
layer, we can use multiple SA heads simultaneously.

𝑦(ℎ) = SAttn 𝑲 ℎ 𝑥, 𝑽 ℎ 𝑥, 𝑸 ℎ 𝑥 , 1 ≤ ℎ ≤ 𝐻

• Each attention head has its own weights 𝑲 ℎ , 𝑽 ℎ , 𝑸 ℎ .

• Results are combined with a linear projection 𝑾 ∈ ℝ𝐻𝑑×𝑑.

• By stacking all outputs: 𝑦 = 𝑾 𝑦 1 𝑦 2 … 𝑦 𝐻 𝑇

24

Transformer

• Built from several transformer blocks.

• Each block contains:

• Multi-Head Attention.

• Residual connection 𝑦 = 𝑥 + MHA(𝑥).

• Normalisation.

• Feed forward (fully connected) layer
(operates per token).

25

Residual Connections

• Idea: 𝑦 = 𝑓(𝑥) means that 𝑓 needs to learn to pass on all
necessary information to the following layer.

• It can be easier to only learn the changes in the
representation: 𝑦 = 𝑓 𝑥 + 𝑥.

• Bonus: gradients flow much easier through the network.

• Residual blocks are now in almost all architectures CNNs and
Transformers alike.

26

Normalisation

• Consider a single linear layer with ReLU
𝑦 = max 0, 𝑊𝑥 + 𝑏 .

• After initialisation with random (normal) noise, 𝑊 and 𝑏 can
sometimes be hard to learn.

• For example:
• If 𝑥 are very close to 0, 𝑊 needs to be very large.

• If 𝑥 is very negative -> large 𝑏 to avoid 0 gradient from ReLU.

• Etc.

• Idea: just normalise 𝑥 so that it is “well-behaved” for optimisation.

27

Normalisation

• Typical training happens in mini-batches where we pass 𝐵
samples through the model together.

• Gradients are computed using the full batch.
• More stable than using only a single sample.

• Much faster than computing the gradient using the whole dataset.

• Let’s use the batch statistics to normalise outputs of layers!

28

Batch-Normalisation

Ioffe and Szegedy, 2015

• Input: 𝑥 ∈ ℝ𝐵×𝑑 (a batch of 𝐵 vectors in ℝ𝑑)

• Output: 𝑦 = BN 𝑥 ∈ ℝ𝐵×𝑑

• Mean: 𝜇 =
1

𝐵
σ𝑖=1

𝐵 𝑥𝑖 ∈ ℝ𝑑

• Variance: 𝜎2 =
1

𝐵
σ𝑖=1

𝐵 𝑥𝑖 − 𝜇 2 ∈ ℝ𝑑

• Normalisation: 𝑥𝑖,𝑗
′ =

1

𝜎𝑗
2+𝜖

(𝑥𝑖,𝑗 − 𝜇𝑗)

• Learnable (𝛾, 𝛽 ∈ ℝ𝑑) rescaling: 𝑦𝑖,𝑗 = 𝛾𝑗𝑥𝑖,𝑗
′ + 𝛽𝑗

29

Batch-Normalisation

• Learning 𝛾 = 𝜎2, 𝛽 = 𝜇 turns BN into an identity function.

• Usually requires reasonably sized batches to compute stable
statistics.

• Depends on training statistics! For testing: use fixed statistics
(exponential moving average) from train-set.

• Usually: after Fully Connected or Convolutional layers, and
before nonlinearity.

• Idea: ReLU will 0-out about 50% activations.

30

Batch-Normalisation

• Makes deep networks much easier to train.

• Improves gradient flow.

• Allows higher learning rates, faster convergence.

• Networks become more robust to initialization.

• Acts as regularization during training.

• Zero overhead at test-time: statistics are fixed and can be fused
with previous layer!

• Behaves differently during training and testing: very common
source of bugs!

31
Slide from F Li

http://cs231n.stanford.edu/slides/2023/lecture_6.pdf

Other Normalisation Layers

32
Wu and He, “Group Normalization”, ECCV 2018

Creativity of CV Researchers

• “Show, attend, and tell” (Xu et al., ICML 2015)

 Look at image, attend to image regions, produce queston

• “Ask, attend, and answer” (Xu and Saenko, ECCV 2016)
“Show, ask, attend, and answer” (Kazemi and Elqursh, 2017)

 Read text of question, attend to image regions, produce answer

• “Listen, attend, and spell” (Chan et al., ICASSP 2016)

 Process raw audio, attend to audio regions while producing text

• “Listen, attend, and walk” (Mei et al., AAAI 2016)

 Process text, attend to text regions, output navigation commands

• “Show, attend, and read” (Li et al., AAAI 2019)

 Process image, attend to image regions, output text

• “Show, attend, and interact” (Qureshi et al., ICRA 2017)

 Process image, attend to image regions, output robot control commands

33
Slide adapted from J Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf

Vision Transformers

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, A Dosovitskiy et al., 2021

• Split image into 16x16 patches.

• A linear layer that maps each patch to a vector (token).

• Add 2D positional encoding.

• Add one extra token to the sequence of 256. This token will in
the end map to the class distribution.

• Train a transformer on sequences of length 257.

34

Vision Transformer

35

Vision Transformer

• Still seems to learn
reasonable “filters” in the
first layer.

• Trained with ADAM
optimiser.

Tricks

• Checkpoint averaging

• Residual dropout

• Label smoothing

36

Attention Visualisation

• Attention weights are single scalars
per token than sum to 1.

• We can visualise them as a heat-map
and overlay them over the image.

• Seems to align with human intuition
about what is important in an image.

37

Positional Encoding

• ViT learns the positional
encoding from scratch,
instead of hand-crafting it.

• The learned embeddings
have a strong local similarity.

• They can thus identify where
a token comes from in the
image.

38

Data

• ViTs benefit from very large
datasets.

• BiT is a CNN (ResNet).

• Transfer learning becomes
even more important!

39

Transfer Learning

• Train on a large dataset for some (related) task.

• Then fine-tune on your task that has less data.

• Fine-tuning usually with a lower learning rate or some layers
frozen.

• Intuition: learned weights for another task often still much
better than random initialisation.

• Evidence: first layer filters almost always look the same.

40

The Encoder-Decoder Transformer

41

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

42

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

43

All tokens interact with each other

Image source

Encoder self-attention

https://jalammar.github.io/illustrated-transformer/

Encoder block

44

All tokens interact with each other

Residual connection &
Layer normalization

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

45

All tokens interact with each other

Residual connection &
Layer normalization

MLPs independently on each token
(no interaction)

Image source

https://jalammar.github.io/illustrated-transformer/

Encoder block

46

All tokens interact with each other

Residual connection &
Layer normalization

MLPs independently on each token
(no interaction)

Image source

https://jalammar.github.io/illustrated-transformer/

• Similar to encoder block

• Input tokens are pre-
defined/learned

• Encoder-Decoder attention
• Queries 𝑸 from the output of the

previous layer of the decoder
• Keys 𝑲 and values 𝑽 from the

output of the encoder
• Every position in the decoder

attends over
all positions in the input sequence

• Often also called “cross attention”

Decoder block

47

ConvNeXt? – Probably not

A ConvNet for the 2020s, Liu et al., 2022

• Main changes:
• Grouped convolutions

• Wider network
(more filters per layer)

• So far:
transformers still dominant.

48

	Slide 1: Transformers
	Slide 2: Further Reading
	Slide 3: CNNs to Transformers
	Slide 4: Attention
	Slide 5: 1D Attention
	Slide 6: 1D Attention
	Slide 7: 1D Attention
	Slide 8: 1D Attention
	Slide 9: 1D Attention
	Slide 10: 1D Attention
	Slide 11: Setup for attention
	Slide 12: Input/Output Behaviour
	Slide 13: Attention
	Slide 14: Attention
	Slide 15: Attention
	Slide 16: Attention
	Slide 17: Attention
	Slide 18: Attention Weights
	Slide 19: Attention (to) Details
	Slide 20: Attention (to) Details
	Slide 21: Attention
	Slide 22: Self-Attention
	Slide 23: (Self-)Attention
	Slide 24: Multi-Head (Self-)Attention
	Slide 25: Transformer
	Slide 26: Residual Connections
	Slide 27: Normalisation
	Slide 28: Normalisation
	Slide 29: Batch-Normalisation
	Slide 30: Batch-Normalisation
	Slide 31: Batch-Normalisation
	Slide 32: Other Normalisation Layers
	Slide 33: Creativity of CV Researchers
	Slide 34: Vision Transformers
	Slide 35: Vision Transformer
	Slide 36: Vision Transformer
	Slide 37: Attention Visualisation
	Slide 38: Positional Encoding
	Slide 39: Data
	Slide 40: Transfer Learning
	Slide 41: The Encoder-Decoder Transformer
	Slide 42: Encoder block
	Slide 43: Encoder block
	Slide 44: Encoder block
	Slide 45: Encoder block
	Slide 46: Encoder block
	Slide 47: Decoder block
	Slide 48: ConvNeXt? – Probably not

