
Transformers
Computer Vision – Lecture 08
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Further Reading

• Slides from F Li

• Slides from J Johnson

• Slides from M Niessner

• None of the books I know contains transformers. 
Foundations of Computer Vision covers transformers
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http://cs231n.stanford.edu/slides/2023/lecture_9.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf
https://niessner.github.io/I2DL/material/Lectures/11.RNN.pdf


CNNs to Transformers

An image is worth 16x16 words: Transformers for image 
recognition at scale, A Dosovitskiy et al., 2021
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Attention

Attention Is All You Need, A Vaswani et 
al., 2017 (100k citations now)

• Before: main building block is a 
convolution.

• After: main building block is multi-
head attention.
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1D Attention

• Attention was first developed for natural language 
processing.

• Used to process a sequence of tokens (e.g. words).

• Each token is embedded into a vector space.

• Idea: long-range context is important.
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1D Attention

Example machine translation:

• Languages tend to vary in 
word order.

• The model cannot translate 
word-by-word but must be 
able to look at all words.
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


1D Attention

Example machine translation:

• English: “The agreement on 
the European Economic Area 
was signed in August 1992.”

• French: “L’accord sur la zone 
économique européenne a 
été signé en août 1992. ”
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf
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1D Attention

Example machine translation:

• English: “The agreement on 
the European Economic Area 
was signed in August 1992.”

• French: “L’accord sur la zone 
économique européenne a 
été signé en août 1992. ”

10
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide adapted from J Johnson

1-to-1 matching in word order

reverse word order

different number of words

Attention

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Setup for attention
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Input: sentence to translate

𝑧1

L’accord

𝑧2

sur

𝑧𝑀

1992

…

𝑥1input token 1

input token 2

input token 𝑁

…

Attention

output token 1

output token 2

output token 𝑁

…

Input: sequence of 
tokens that should 
predict the words of the 
translation

Output: sequence of 
tokens, e.g. each with a 
probability distribution 
over words

𝑥2

𝑥N

𝑦1

𝑦2

𝑦N



Input/Output Behaviour

• 𝑁 input tokens 𝑥𝑖 ∈ ℝ𝑑

• 𝑀 “condition” tokens 𝑧𝑗 ∈ ℝ𝑑

• Predict: 𝑁 output tokens 𝑦𝑖 ∈ ℝ𝑑

• We assume all vectors are in ℝ𝑑, if not a linear layer can fix it.

• Similar to convolution, many of these layers can be stacked.

• Example translation: we can add a final linear layer that 
maps each output token to word probabilities (use softmax)
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Attention

• Each input token is processed in the same way: 

 𝑦𝑖 = 𝐴𝑡𝑡𝑛(𝑥𝑖 , 𝑍) – analyse only one for now.

• Intuition: 𝑥𝑖 looks at all 𝑧𝑗 and decide what is relevant. 
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𝑧1 𝑧2 𝑧𝑀

…

𝑥1
𝑦1



Attention

• We do this by introducing three functions:
• A query function 𝑄: ℝ𝑑 → ℝ𝑑

• A key function K: ℝ𝑑 → ℝ𝑑

• A value function V: ℝ𝑑 → ℝ𝑑

• They are used like this:
• 𝑞𝑖 = 𝑄(𝑥𝑖)

• 𝑘𝑗 = 𝐾(𝑧𝑖)

• 𝑣𝑗 = 𝑉(𝑧𝑖)

• Naming: we will use queries to find keys and retrieve values.14

𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…



Attention

• Compute similarities between keys and values using a dot 
product. 

• Intuition: large if key is similar to query. 

𝑒𝑖,𝑗 =
1

√𝑑
𝑞𝑖

𝑇𝑘𝑗 ∈ ℝ
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𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…

𝑒11 𝑒12 𝑒1𝑀



Attention

• Intuition: interpret 𝑒𝑖,𝑗 as weights to combine their values 𝑣𝑗. 

• Problem: 𝑒𝑖,𝑗 ∈ ℝ, unbounded

• Solution: 𝑎𝑖,𝑗 = softmaxj(𝑒𝑖,1, … , 𝑒𝑖,𝑀) 

• Normalises: 0 ≤ 𝑎𝑖,𝑗 ≤ 1

• Weights sum to 1: σ𝑗=1
𝑀 𝑎𝑖,𝑗 = 1
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𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…

𝑒11 𝑒12 𝑒1𝑀

𝑎11 𝑎12 𝑎1𝑀



Attention

We can now compute the output as the weighted sum of 
values:

𝑦𝑖 = 

𝑗=1

𝑀

𝑎𝑖,𝑗𝑣𝑗

• 𝑎𝑖,𝑗 are the attention weights.
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𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1

…

𝑒11 𝑒12 𝑒1𝑀

𝑎11 𝑎12 𝑎1𝑀

𝑎11𝑣1 𝑎12𝑣2 𝑎1𝑀𝑣𝑀 𝑦1+ + + =



Attention Weights
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Attention (to) Details

• The three functions for query, key, and value are linear 
functions, of appropriately sized matrices.
• Query function 𝑄 𝑥 = 𝑸𝑥
• Key function K 𝑧 = 𝑲𝑧
• Value function V 𝑧 = 𝑽𝑧

• All operations (except softmax) can be implemented by 
matrix-vector (or tensor) products: fast.

Attn 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

√𝑑
𝑉 

• Attention is permutation-equivariant: changing the order of 
inputs 𝑥𝑖 will simply change the order of outputs 𝑦𝑖 .
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Attention (to) Details

• Permutation equivariance is sometimes unwanted: e.g. 
word-order matters in NLP.

• Idea: add a signal to the inputs, that identifies the order:
𝑥𝑖

′ = 𝑥𝑖 + 𝑃(𝑖)

• 𝑃: ℕ → ℝ𝑑 can be simply learned by the network, or 
handcrafted: 
e.g. combining sin and cos frequencies sampled at 𝑖.

20



Attention

What if we do not have a conditional task?
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𝑧1 𝑧2 𝑧𝑀

𝑥1

𝑘1 𝑘2 𝑘𝑀𝑣1 𝑣2 𝑣𝑀

𝑞1 …𝑎11𝑣1 𝑎12𝑣2 𝑎1𝑀𝑣𝑀 𝑦1+ + + =

𝑥2 𝑞2 𝑦2

𝑥N 𝑞N 𝑦N

… …

…𝑎21𝑣1 𝑎22𝑣2 𝑎2𝑀𝑣𝑀+ + + =

…𝑎𝑁1𝑣1 𝑎𝑁2𝑣2 𝑎𝑁𝑀𝑣𝑀+ + + =



Self-Attention

We simply predict the keys and values also from the input.
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𝑥1

𝑘1 𝑘2 𝑘𝑁𝑣1 𝑣2 𝑣𝑁

𝑞1 …𝑎11𝑣1 𝑎12𝑣2 𝑎1𝑁𝑣𝑁 𝑦1+ + + =

𝑥2 𝑞2 𝑦2

𝑥N 𝑞N 𝑦N

… …

…𝑎21𝑣1 𝑎22𝑣2 𝑎2𝑁𝑣𝑁+ + + =

…𝑎𝑁1𝑣1 𝑎𝑁2𝑣2 𝑎𝑁𝑁𝑣𝑁+ + + =



(Self-)Attention

• Without positional encoding: permutation invariant.

• Complexity: 𝒪(𝑁2) in the number of input tokens.

• What to pay attention to is learned automatically.

• Attention is thus somewhat interpretable (Lecture 09).
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Multi-Head (Self-)Attention

Similar to convolutions, by applying several different filters per 
layer, we can use multiple SA heads simultaneously.

𝑦(ℎ) = SAttn 𝑲 ℎ 𝑥, 𝑽 ℎ 𝑥, 𝑸 ℎ 𝑥 , 1 ≤ ℎ ≤ 𝐻

• Each attention head has its own weights 𝑲 ℎ , 𝑽 ℎ , 𝑸 ℎ .

• Results are combined with a linear projection 𝑾 ∈ ℝ𝐻𝑑×𝑑.

• By stacking all outputs: 𝑦 = 𝑾 𝑦 1  𝑦 2 … 𝑦 𝐻 𝑇
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Transformer

• Built from several transformer blocks.

• Each block contains:

• Multi-Head Attention.

• Residual connection 𝑦 = 𝑥 + MHA(𝑥).

• Normalisation.

• Feed forward (fully connected) layer 
(operates per token).
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Residual Connections

• Idea: 𝑦 = 𝑓(𝑥) means that 𝑓 needs to learn to pass on all 
necessary information to the following layer.

• It can be easier to only learn the changes in the 
representation: 𝑦 = 𝑓 𝑥 + 𝑥. 

• Bonus: gradients flow much easier through the network.

• Residual blocks are now in almost all architectures CNNs and 
Transformers alike.
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Normalisation

• Consider a single linear layer with ReLU 
𝑦 = max 0, 𝑊𝑥 + 𝑏 .

• After initialisation with random (normal) noise, 𝑊 and 𝑏 can 
sometimes be hard to learn.

• For example:
• If 𝑥 are very close to 0, 𝑊 needs to be very large.

• If 𝑥 is very negative -> large 𝑏 to avoid 0 gradient from ReLU.

• Etc.

• Idea: just normalise 𝑥 so that it is “well-behaved” for optimisation.
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Normalisation

• Typical training happens in mini-batches where we pass 𝐵 
samples through the model together.

• Gradients are computed using the full batch.
• More stable than using only a single sample.

• Much faster than computing the gradient using the whole dataset.

• Let’s use the batch statistics to normalise outputs of layers!
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Batch-Normalisation

Ioffe and Szegedy, 2015

• Input: 𝑥 ∈ ℝ𝐵×𝑑 (a batch of 𝐵 vectors in ℝ𝑑)

• Output: 𝑦 = BN 𝑥 ∈ ℝ𝐵×𝑑 

• Mean:     𝜇 =
1

𝐵
σ𝑖=1

𝐵 𝑥𝑖 ∈ ℝ𝑑

• Variance:     𝜎2 =
1

𝐵
σ𝑖=1

𝐵 𝑥𝑖 − 𝜇 2 ∈ ℝ𝑑

• Normalisation:    𝑥𝑖,𝑗
′ =

1

𝜎𝑗
2+𝜖

(𝑥𝑖,𝑗 − 𝜇𝑗)

• Learnable (𝛾, 𝛽 ∈ ℝ𝑑) rescaling: 𝑦𝑖,𝑗 = 𝛾𝑗𝑥𝑖,𝑗
′ + 𝛽𝑗

29



Batch-Normalisation

• Learning 𝛾 = 𝜎2, 𝛽 = 𝜇 turns BN into an identity function.

• Usually requires reasonably sized batches to compute stable 
statistics.

• Depends on training statistics! For testing: use fixed statistics 
(exponential moving average) from train-set.

• Usually: after Fully Connected or Convolutional layers, and 
before nonlinearity.

• Idea: ReLU will 0-out about 50% activations.
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Batch-Normalisation

• Makes deep networks much easier to train.

• Improves gradient flow.

• Allows higher learning rates, faster convergence.

• Networks become more robust to initialization.

• Acts as regularization during training.

• Zero overhead at test-time: statistics are fixed and can be fused 
with previous layer!

• Behaves differently during training and testing: very common 
source of bugs!
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Slide from F Li

http://cs231n.stanford.edu/slides/2023/lecture_6.pdf


Other Normalisation Layers

32
Wu and He, “Group Normalization”, ECCV 2018



Creativity of CV Researchers

• “Show, attend, and tell” (Xu et al., ICML 2015)

 Look at image, attend to image regions, produce queston

• “Ask, attend, and answer” (Xu and Saenko, ECCV 2016)
“Show, ask, attend, and answer” (Kazemi and Elqursh, 2017)

 Read text of question, attend to image regions, produce answer

• “Listen, attend, and spell” (Chan et al., ICASSP 2016)

 Process raw audio, attend to audio regions while producing text

• “Listen, attend, and walk” (Mei et al., AAAI 2016)

 Process text, attend to text regions, output navigation commands

• “Show, attend, and read” (Li et al., AAAI 2019)

 Process image, attend to image regions, output text

• “Show, attend, and interact” (Qureshi et al., ICRA 2017)

 Process image, attend to image regions, output robot control commands
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Slide adapted from J Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Vision Transformers

An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale, A Dosovitskiy et al., 2021

• Split image into 16x16 patches.

• A linear layer that maps each patch to a vector (token).

• Add 2D positional encoding.

• Add one extra token to the sequence of 256. This token will in 
the end map to the class distribution.

• Train a transformer on sequences of length 257. 
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Vision Transformer
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Vision Transformer

• Still seems to learn 
reasonable “filters” in the 
first layer.

• Trained with ADAM 
optimiser.

Tricks

• Checkpoint averaging

• Residual dropout

• Label smoothing
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Attention Visualisation

• Attention weights are single scalars 
per token than sum to 1.

• We can visualise them as a heat-map 
and overlay them over the image.

• Seems to align with human intuition 
about what is important in an image.
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Positional Encoding

• ViT learns the positional 
encoding from scratch, 
instead of hand-crafting it.

• The learned embeddings 
have a strong local similarity.

• They can thus identify where 
a token comes from in the 
image.

38



Data

• ViTs benefit from very large 
datasets.

• BiT is a CNN (ResNet).

• Transfer learning becomes 
even more important!
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Transfer Learning

• Train on a large dataset for some (related) task.

• Then fine-tune on your task that has less data.

• Fine-tuning usually with a lower learning rate or some layers 
frozen.

• Intuition: learned weights for another task often still much 
better than random initialisation.

• Evidence: first layer filters almost always look the same.
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The Encoder-Decoder Transformer

41

Image source

https://jalammar.github.io/illustrated-transformer/


Encoder block

42

Image source

https://jalammar.github.io/illustrated-transformer/


Encoder block

43

All tokens interact with each other

Image source

Encoder self-attention

https://jalammar.github.io/illustrated-transformer/


Encoder block
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All tokens interact with each other

Residual connection & 
Layer normalization

Image source

https://jalammar.github.io/illustrated-transformer/


Encoder block
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All tokens interact with each other

Residual connection & 
Layer normalization

MLPs independently on each token
(no interaction)

Image source

https://jalammar.github.io/illustrated-transformer/


Encoder block
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All tokens interact with each other

Residual connection & 
Layer normalization

MLPs independently on each token
(no interaction)

Image source

https://jalammar.github.io/illustrated-transformer/


• Similar to encoder block

• Input tokens are pre-
defined/learned

• Encoder-Decoder attention
• Queries 𝑸 from the output of the 

previous layer of the decoder
• Keys 𝑲 and values 𝑽 from the 

output of the encoder
• Every position in the decoder 

attends over
all positions in the input sequence 

• Often also called “cross attention”

Decoder block
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ConvNeXt? – Probably not

A ConvNet for the 2020s, Liu et al., 2022

• Main changes:
• Grouped convolutions

• Wider network 
(more filters per layer)

• So far: 
transformers still dominant.
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