
Visualizations and 
Explanations

Computer Vision – Lecture 09
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Further Reading

• Slides from L Fei-Fei.

• CVPR’18 Tutorial on Interpretable ML for CV

• Many posts on https://distill.pub
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http://cs231n.stanford.edu/slides/2023/lecture_12.pdf
https://interpretablevision.github.io/index_cvpr2018.html
https://distill.pub/
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Which insights can we 
derive?
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Does the orangutan know what a 
hammer is?
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• Does she know hammering (Task)?
• Can she hammer (Task)?
• Does she know what a hammer is 

(Concept)?

Yes
No

Maybe?



Clever Hans
• 1895-1916 German horse 

that was doing arithmetic.

• Formal investigation: horse 
was watching the reactions 
of his trainer.

• Trainer was entirely 
unaware that he was 
providing such cues.

• -> Clever Hans Effect.
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Example: Image Classification
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• Benchmark: PASCAL Visual Objects in Context (2004 - 2012) 
• 20 classes: 

person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, 
car, motorbike, train, bottle, chair, dining table, potted plant, sofa, 
tv/monitor 

• 10,000 images with 25k objects

The PASCAL Visual Object Classes Challenge: A Retrospective 
Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J. and Zisserman, A.
International Journal of Computer Vision, 111(1), 98-136, 2015



Evaluation – test on unseen data
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Jincao Yao
Cross-layer sparse atrous convolution network
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb_main.php



Does the model know what a horse is?
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• Evaluation accuracy is high - does that mean yes?

• No! It uses spurious correlations: many horse 
images have a copyright notice in this dataset

input heatmap for “horse” average heatmap for 
all horse images

Analyzing Classifiers: Fisher Vectors and Deep Neural Networks
Sebastian Bach, Alexander Binder, Grégoire Montavon, Klaus-Robert Müller, Wojciech Samek
International Conference on Computer Vision and Pattern Recognition, 2015 



Explainability

• Helps to uncover biases in data and models.
• Additional tool beyond test set evaluation.
• Another layer of verification.
• Help to create trust.
• Allows for non-expert interaction.
• Can lead to new insights.
• Is in the law: (GDPR Art. 13,14,22) “the right for explanation”. 
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GDPR, Art. 13.2.f

Ke Jie vs. AlphaGo



Explanations

Content

Explanations provide 
different types of 
information.

• Representations
• Individual predictions
• Behaviour
• Examples
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Recipient

Explanations need to 
adapt to the recipient 
of the information.

• Developers
• Domain experts 
• Users

Purpose

Explanations differ 
based on 
use-cases.

• What question is 
answered by the 
explanation?
• What is the 

explanation used for?
Towards explainable artificial intelligence
Samek Wojciech, and Klaus-Robert Müller 
Explainable AI: interpreting, explaining and visualizing deep learning 
Springer, Cham, 2019



Taxonomy - Approaches
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Transparent Models

The model is constructed 
such that (some) 
mechanism have semantic 
meaning.

• Does not need post-hoc 
analysis

• Task-specific 
architecture

• Can affect performance

Post-Hoc Analysis

Explanations are derived 
from a fixed, pre-trained 
model via analysis.

• No impact on 
performance

• Difficult 
• Explanations are often 

local around predictions
• Main focus today!

Learned Explanations

The model is trained to 
deliver explanations 
together with predictions.

• Explanations can be very 
semantic

• Might need meta-
explanations

• Can affect performance



Post-Hoc Analysis: First Layer

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." NeurIPS 2012.

First-layer filters from ResNet18 ( [7×7×3]	 filters): 

First-layer learned 
features include 
basic elements, 
such as edges, blobs, 
colors, etc.

Deeper layers 
depend on the 
features computed 
in the layers before: 
hard to directly 
understand the 
weights.
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Second Layer

The second layer has 64 
3x3 convolutions, each 
operates on 64 channels.

Not very interpretable!
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Last Layer

• ResNet18: last layer 
512x1000 (1000 class 
output)

• Dimensionality reduction 
with PCA (use the first 2 
principal components)

• Observe groupings.
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Post-Hoc Analysis

• So far: we have looked at the learned weights after training.
• This can show what the model has learned.
• We also want to understand what the model does with its 

inputs.

• We can also look at activations (=outputs of layers) instead.
• For that, we need to input data. 
• Use data that was unseen during training: we want to 

understand generalisation.
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Last Layer Activations
• Compute inputs to the last 

layer of validation set 
images.

• Compute PCA.

• Visualise embedding with 
class labels.

• Last layer: linear+softmax, 
so we want linear 
separability.
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t-SNE Embedding

• PCA gives us a linear 
projection from a high 
dimensional space to 2 
dimensions for visualisation.
• There are non-linear 

embedding techniques: e.g. 
t-SNE.
• Nicer plots, but less 

interpretable embedding.
• Further reading.

Hinton, Geoffrey; Roweis, Sam. Stochastic neighbor embedding. NeurIPS, 2021
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https://distill.pub/2016/misread-tsne/
https://cs.nyu.edu/~roweis/papers/sne_final.pdf


Comparisons
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Comparisons
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Comparisons
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ResNet20 – 92.6% Accuracy
ResNet56 – 94.4% Accuracy



Comparisons
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ResNet20 – 92.6% Accuracy
ResNet56 – 94.4% Accuracy



Comparisons

• Large visual difference to random network – we have clearly 
learned something!

• Differences between trained networks small, and hard to 
interpret.

• Careful: t-SNE uses randomness – every run will show you a 
different embedding.
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Input Reconstruction

• To understand what a model 
has learned, we can also 
search for an input that 
maximised a class probability.

• Search with gradient ascent on 
the image.

• But: generates adversarial 
example.
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Input Reconstruction - Tricks
• Regulariser: smoothness (total variation = L1 

on image gradients).

• Image jittering: randomly move image by 
some pixels at every step.

• Better regularisers: better reconstructions.

• Works also for intermediate neurons.

• https://distill.pub/2017/feature-visualization/
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Understanding Samples

• We can also try to understand the 
decision process for a single 
sample.

• ResNet50: “Dingo” 

• ResNet18: “Bucket” 

• ConvNeXt_Large: “Dingo”
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Dingo
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https://en.wikipedia.org/wiki/Dingo



Black-Box Attribution

• No access to model itself, observe only input/output.

• Idea: make changes to the input and observe what happens.

• Occlusion method (Zeiler & Fergus, 2015)
• Occlude a part of the image and measure the change in response.
• The bigger the change, the more important was the occluded 

region.
• Measure the change in target/predicted class probability (other 

classes can change too, but do not matter)
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Occlusion Method
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ResNet50: “Dingo”



Occlusion Method
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ResNet18: “Bucket”



Occlusion Method
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ResNet18 (random init.): “Gong”



Occlusion Method

• Depends on this size of the occlusion.
• What do we fill in when we occlude? (0, random noise, avg, 

…)
• Is a square occlusion meaningful?

• Slow: needs many network evaluations – one for each patch.

Several improvements, for example:
• Fong, Ruth C., and Andrea Vedaldi, Interpretable explanations of black boxes by meaningful 

perturbation ICCV, 2017
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White-Box Attribution

• We do have access to the weights and computations inside 
the model.

• How can we use this information to extract understanding.

• Idea: use the gradient magnitude ∇'𝑓 𝑥 (.

• “Which direction does the input need to change to affect the 
output the most.”
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Gradient Method
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AlexNet: “Mountain Lion”



Gradient Method
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AlexNet (random init)



Gradient Method
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ResNet50 “Dingo”



Gradient Methods

• Not limited to last layer.

• Several improved variants.
• Mainly: ideas how to deal with ReLU and pooling layers.

• Observation: lower dependence on network weights. 

• How can we benchmark visualisation techniques?

37



Attribution Methods

• Visualisation techniques that highlight which input pixels are 
important are often called Attribution Methods or Saliency 
Methods.

• The (un) reliability of saliency methods, Kindermans, Hooker, 
et al., 2017

• A benchmark for interpretability methods in deep neural 
networks, Hooker et al., 2019
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ROAR: Remove and Retrain

• Run your attribution method on the train & test set.
• For each image: sort all pixels by attribution performance.
• Delete X% of most important pixels.
• Retrain your network on this new data.

• Measure performance change on test set.
• If you removed many critical pixels, the performance will be 

lower.
• Need for re-training: images look very different after deletion.
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ROAR
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10% removed

90% removed

Image source

https://github.com/google-research/google-research/blob/master/interpretability_benchmark/README.md


ROAR

• Gradient Image works even 
slightly worse than randomly 
deleting pixels.

• Ensemble approaches are 
much better: average the 
gradients over many small 
perturbations (add noise to 
the image). 
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A benchmark for interpretability methods in deep neural networks, Hooker et al., 2019



Sanity Checks

Sanity Checks for Saliency Maps, Adebayo et al, 2018.

• Test 1: randomising the model weights should affect the 
attribution method. (Otherwise we are not visualising what 
the model has learned)

• Test 2: Train another model on the same data but random 
labels. This should also affect the visualisations.
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Attention

• Self-Attention on 14x14 patches means attention weights 
are a matrix of size 196x196 (or equiv. 14x14x14x14)
• For every token, 14x14 attention map for each layer (12).
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centre token (7,7):

top left (1,1):

middle right (12,6):



Visualising Attention

• Many choices: layer, token, MHA head.

• Trained models seem to do the “right thing”.

• Last layer looks task focused: most attention is on the object 
independent of which token we are looking at.

• Often difficult to choose what to visualise, some choice will 
always look similar to what you are looking for -> 
confirmation bias.
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Taxonomy - Approaches
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Transparent Models

The model is constructed 
such that (some) 
mechanism have semantic 
meaning.

• Does not need post-hoc 
analysis

• Task-specific 
architecture

• Can affect performance

Post-Hoc Analysis

Explanations are derived 
from a fixed, pre-trained 
model via analysis.

• No impact on 
performance

• Difficult 
• Explanations are often 

local around predictions
• Main focus today!

Learned Explanations

The model is trained to 
deliver explanations 
together with predictions.

• Explanations can be very 
semantic

• Might need meta-
explanations

• Can affect performance



Example: Transparent Models

• Decompose the problem in smaller parts that can be interpreted 
individually

• Increases interpretability of the whole system
• Some steps might need further decomposition/explanation
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In the first quarter, Buffalo trailed early as Chiefs QB Tyler Thigpen completed a 36-
yard TD pass to RB Jamaal Charles. The Bills responded with RB Marshawn Lynch
getting a 1-yard TD run. In the second quarter, Buffalo took the lead as kicker Rian
Lindell made a 21-yard field goal. Kansas City answered with Thigpen completing a 2-
yard TD pass to TE Tony Gonzalez. Buffalo regained the lead as Lindell got a 39-yard
field goal, while rookie CB Leodis McKelvin returned an interception 64 yards for a
touchdown. The Chiefs struck back with kicker Connor Barth getting a 45-yard field
goal, yet the Bills continued their offensive explosion as Lindell got a 34-yard field
goal, along with QB Trent Edwards getting a 15-yard TD run.
In the third quarter, Buffalo continued its poundings with Edwards getting a 5-yard
TD run, while Lindell got himself a 38-yard field goal. Kansas City tried to rally as
Thigpen completed a 45-yard TD pass to WR Mark Bradley, yet the Bills replied with
Edwards completing an 8-yard TD pass to WR Josh Reed. In the fourth quarter,
Buffalo pulled away as Edwards completed a 17-yard TD pass to TE Derek Schouman.

Who kicked the longest field 
goal in the second quarter?

Neural Module Networks for Reasoning over Text
Gupta, N., Lin, K., Roth, D., Singh, S., & Gardner, M.

ICLR 2019



Example: Learned Explanations
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Hendricks, L. A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., & Darrell, T.
Generating visual explanations
European Conference on Computer Vision, 2016

• The model predicts an 
explanation
• Training contains 

explanations together with 
input-output pairs
• Explanation needs to be 

both:
• input specific
• output specific

• How do we explain the 
explanation?


