
Segmentation
Computer Vision – Lecture 11
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Further Reading

• Slides from S Lazebnik

• Slides from J Johnson

• Slides from A Geiger
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https://slazebni.cs.illinois.edu/spring23/
https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture15.pdf
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/


Granularity
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Semantic Segmentation

• Label each pixel in the 
image with a category 
label

• Do not differentiate 
instances, only care 
about pixels
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Slide: J Johnson



Evaluation

• Per-class IoU.

• Since there are no instances, evaluation is much easier than 
detection. 

• Compare the binary masks of prediction and GT for each 
class.

• Average over classes.

• Note: IoU is favourable to large objects. (harder to intersect  
small objects) 
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Sliding Window

Similar to detection:

• Slide a window over the whole image.

• Classify the centre pixel of the window.
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Classifier dog

Classifier tree

Classifier snow

Classifier sky

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Sliding Window Segmentation

• Very inefficient! 

• Very noisy: independent decision for each patch.

• Observation: we are recomputing the same features for 
overlapping patches.

• How can we share computation? 

• Convolutions!

7



Fully Convolutional Networks

If we do not down-sample (and always pad appropriately) we 
can design a network with convolutions that has the same 
input and output size.
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Source: Stanford CS231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf


Fully Convolutional Networks

If we do not down-sample (and always pad appropriately) we 
can design a network with convolutions that has the same 
input and output size.
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Source: Stanford CS231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf


FCN: Fully Convolutional Networks

If we do not down-sample (and always pad appropriately) we 
can design a network with convolutions that has the same 
input and output size.

Very costly at full resolution. Down-sample, then up-sample!
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Source: Stanford CS231nJ. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf
http://arxiv.org/pdf/1411.4038.pdf


Upsampling: Unpooling

• “Inverse” max/avg-pooling operation.

• Pooling is not an invertible function: information is lost and 
cannot be recovered. 

• Several options to approximate it.
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Unpooling: Nearest Neighbour
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Unpooling: Bed of Nails
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Unpooling: Bilinear Interpolation
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Max-Unpooling

15

1 2

3 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

5 6

7 8

1 2 6 3

3 5 2 1

4 5 6 2

7 1 4 8

Other 
layers

While down-sampling: 
remember locations

While up-sampling: use 
remembered locations

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015 Slide: J Johnson



Convolution with Stride

3x3 Convolution with stride 2
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Transposed Convolution

3x3 convolution transpose, stride 2

• 9 weights

• Scale by input value

• Sum in overlapping regions

17



Transposed Convolution
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Transposed Convolution

• Learnable upsampling.

• Outputs  are the sum of 1-4 values: often grid pattern in 
output. Add normal convolution to learn smoothing.

Other names (can be confusing)

• Deconvolution

• Upconvolution

• Fractionally strided convolution

• Backward strided convolution
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U-Net

O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015

• Skip-connections.

• Concatenate upsampled 
higher-level feature maps 
with higher-res, lower-level 
feature maps.

• Low-level feature maps: 
details.

• High-level feature maps: 
semantics.
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https://arxiv.org/pdf/1505.04597.pdf


Dense Prediction Architectures

Figure source
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https://phillipi.github.io/pix2pix/


Transformer Architectures
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Cheng, Schwing, Kirillov, “MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation”, NeurIPS 2021



Interactive Segmentation

• User specifies what to segment.

• Input:
• Seed points
• Scribbles
• Bounding box
• Text 
• …

• Model segments corresponding 
object(s).
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Image source

https://arxiv.org/pdf/2304.02643.pdf


SAM: Segment Anything Model

Kirilliov et al., 2023

• Trained a model on various input 
modalities.

• Large scale supervision 
• 1B masks

• 11M images
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Training with Humans in the Loop

1. Annotate data.

2. Train model.

3. Label more data with the 
model.

4. Humans fix, improve labels.

5. Goto 2.
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Large-Scale Annotations
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Image source

https://arxiv.org/pdf/2304.02643.pdf


Interactive Segmentation

• User centric.

• SAM: no class labels, just binary segmentation.

Other types:

• Foreground/background segmentation 

• Referring expressions segmentation (“The man with the blue 
hat”)

• Saliency segmentation (what stands out in the image)
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Things and Stuff

Thing: An object with a specific size and 
shape.

Stuff: Material defined by a 
homogeneous or repetitive pattern of 
fine-scale properties, but has no specific 
or distinctive spatial extent or shape

• Object detection: things (instances)

• Semantic segmentation: things and 
stuff (but no instances)
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Things:
• Dog
• Tree
• Lantern
• …

Stuff:
• Sky
• Snow
• …



Instance Segmentation

• Semantic segmentation does not 
separate objects of the same class.

• Object detection finds individual 
objects (instances).

• Instance segmentation: 
segmentation at instance-level.
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Instance Segmentation

• Detect all objects in the image, and identify the pixels that 
belong to each object (only things, not stuff)

• Intuitive approach: 
• Detect objects 

• predict a segmentation mask for each object

• Practice: add another branch to your detector that predicts a 
mask for each box.
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Mask R-CNN

Faster R-CNN + FCN on RoIs

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Mask branch: separately predict 
segmentation for each possible class

Classification+
regression branch

31

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


RoIPool

Nearest neighbor quantization results in small errors

Slide: R Girshick



RoIAlign vs. RoIPool

RoIPool: nearest neighbor quantization

RoIAlign: bilinear interpolation



Mask R-CNN

From RoIAlign features, predict class label, bounding box, and 
segmentation mask

Separately predict binary mask 
(28x28) for each class with per-
pixel sigmoids, use average 
binary cross-entropy loss (80 
classes)

Classification head

Regression head



Mask R-CNN Prediction
28x28 soft prediction

Resized soft prediction Final mask
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Slide: R Girshick



Mask R-CNN Prediction

28x28 soft prediction

Resized Soft prediction

Final mask
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Slide: R Girshick
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Slide: R Girshick
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Slide: R Girshick



Panoptic Segmentation

• Combine semantic 
segmentation for stuff,

• with instance 
segmentation for things.

• Can be solved separately.

• More efficient: share 
some computation 
between tasks. 
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Image source

https://www.v7labs.com/blog/panoptic-segmentation-guide


Keypoints

Instead of predicting masks, we can predict other things 
such as keypoints.

Keypoints here: object-specific landmarks, e.g. joints.
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keypoints
x17



Human Pose

17 keypoint “mask”
predictions shown as
heatmaps
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Keypoint Classification Loss

• Turn the GT location into a class. 

• As many classes as pixels in the heatmap.

• Train with softmax cross-entropy loss.

• Output resolution limited to heatmap resolution (28x28 for 
Mask R-CNN)
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Differentiable Keypoint  Regression

• We can use softmax to formulate the keypoint regression 
task as a heatmap prediction problem.

• Compute softmax over heatmap: 𝐻 = softmax(ℎ)

𝑝𝑥 , 𝑝𝑦
𝑇
=෍

𝑢,𝑣

𝑢
𝑣

𝐻(𝑢, 𝑣)

• Output location is the weighted sum of pixel locations. 

• Use temperature to make it sharper.
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Combining Tasks

Heads can be combined to solve multiple tasks 
simultaneously with minimal overhead. 

44





Dense Captioning

Add a text-output head: predict captions.
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Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016



3D Shape

Add a mesh prediction head.

47
Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019
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