
Multiple View Geometry
Computer Vision – Lecture 15
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Further Reading

• 7 lectures from S Lazebnik 

• Slides from D Fouhey and J Johnson

• Many slides adapted from both sources
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https://slazebni.cs.illinois.edu/fall22/
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_epipolar.pptx


Multi-view geometry problems
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Camera 3

R3,t3
Slide credit: 

Noah Snavely

?

Camera 1
Camera 2

R1,t1 R2,t2

Recovering structure:
Given cameras and 
correspondences, find 3D.



Multi-view geometry problems
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Camera 3

R3,t3

Camera 1
Camera 2

R1,t1 R2,t2

Stereo/Epipolar Geomery:
Given 2 cameras, find where 
a point could be

Slide credit: 

Noah Snavely



Multi-view geometry problems
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Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3

? ? ?

Motion:
Figure out R, t for a set 
of cameras given 
correspondences

Slide credit: 

Noah Snavely



Where can we find the 𝒙′ corresponding to 𝒙 in the other image?

Epipolar constraint
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𝑶 𝑶′

• Suppose we have two cameras with centers 𝑶, 𝑶′
• The baseline is the line connecting the origins 

Epipolar geometry setup
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𝑶 𝑶′

Epipolar geometry setup

Epipoles 𝒆, 𝒆′ are where the baseline intersects the image planes, or 
projections of the other camera in each view

𝒆 𝒆′
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• Consider a point 𝑿, which projects to 𝒙 and 𝒙′

Epipolar geometry setup

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′
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• The plane formed by 𝑿, 𝑶, and 𝑶′ is called an epipolar plane
• There is a family of planes passing through 𝑶 and 𝑶′ 

Epipolar geometry setup

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′
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• Epipolar lines connect the epipoles to the projections of 𝑿
• Equivalently, they are intersections of the epipolar plane with 

the image planes – thus, they come in matching pairs

Epipolar geometry setup

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′
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Epipolar plane

Epipolar geometry setup: Summary

𝑶 𝑶′

𝒙 𝒙′

𝑿

𝒆 𝒆′
Baseline

Epipoles

Epipolar lines
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Example: Converging cameras
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Example: Converging cameras

• Epipoles are finite, may be visible in the image

𝑶 𝑶′𝒆 𝒆′
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Example: Motion parallel to image plane

• Where are the epipoles and what do the epipolar lines look like?

𝑶 𝑶′
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Example: Motion parallel to image plane

𝒆 𝒆′

• Epipoles infinitely far away, epipolar lines parallel

𝑶 𝑶′
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Example: Motion perpendicular to image plane

http://vimeo.com/48425421
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http://vimeo.com/48425421


• Epipole is “focus of 
expansion” and coincides 
with the principal point of 
the camera

• Epipolar lines go out from 
principal point𝑶

𝑶′

𝒆′

𝒆

Example: Motion perpendicular to image plane
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Epipolar constraint

𝑶

𝒙

Suppose we observe a single point 𝒙 in one image
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Where can we find the 𝒙′ corresponding to 𝒙 in the other image?

Epipolar constraint

𝑶 𝑶′

𝒙

𝒆 𝒆′
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Epipolar constraint

𝑶 𝑶′

𝒙

𝒆 𝒆′

• Where can we find the 𝒙′ corresponding to 𝒙 in the other image?
• Along the epipolar line corresponding to 𝒙 (projection of visual ray 

connecting 𝑶 with 𝒙 into the second image plane) 21



Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′

Similarly, all points in the left image corresponding to 𝒙′ have to 
lie along the epipolar line corresponding to 𝒙′
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• Potential matches for 𝒙 have to lie on the matching epipolar line 𝒍′
• Potential matches for 𝒙′ have to lie on the matching epipolar line 𝒍

Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′𝒙

𝒍′𝒍
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Epipolar constraint: Example
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Whenever two points 𝒙 and 𝒙′ lie on matching epipolar lines 𝒍 and 𝒍′, 
the visual rays corresponding to them meet in space, i.e., 𝒙 and 𝒙′ 
could be projections of the same 3D point 𝑿 

Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′𝒙

𝒍′𝒍

𝑿
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Remember: in general, two rays do not meet in space!

Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′𝒙
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Caveat: if 𝒙 and 𝒙′ satisfy the epipolar constraint, this doesn’t mean 
they have to be projections of the same 3D point

Epipolar constraint

𝑶 𝑶′𝒆 𝒆′

𝒙′𝒙

𝒍′𝒍

𝑿′

𝑿
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Epipolar Constraint: Calibrated case

• Assume the intrinsic and extrinsic parameters of the cameras are known, 
world coordinate system is set to that of the first camera 

• Then the projection matrices are given by 𝑲[𝑰 | 𝟎] and 𝑲′[𝑹 | 𝒕]

• We can pre-multiply the projection matrices (and the image points) by 
the inverse calibration matrices to get normalized image coordinates:

•𝒙norm = 𝑲−𝟏𝒙pixel ≅ 𝑰 𝟎]𝑿,       𝒙′norm = 𝑲′−𝟏𝒙pixel
′ ≅ 𝑹 𝒕]𝑿

𝒙 𝒙′

𝑿

𝒕

𝑹
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Epipolar Constraint: Calibrated case

𝒙′ ≅ 𝑹𝒙 + 𝒕

• This means the three vectors 𝒙′, 𝑹𝒙, and 𝒕 are linearly dependent
• This constraint can be written using the triple product 

•𝒙′ ∙ 𝒕 × 𝑹𝒙 = 0

𝒙 𝒙′

𝑿

𝑰 𝟎]
𝒙
1

𝑹 𝒕]
𝒙
1

= 𝑹𝒙 + 𝒕𝒕

𝑹

𝒙norm ≅ 𝑰 𝟎]𝑿 𝒙′norm ≅ 𝑹 𝒕]𝑿= (𝒙, 1)𝑇

29



Epipolar Constraint: Calibrated case

•𝒙′ ∙ 𝒕 × 𝑹𝒙 = 0

𝒙 𝒙′

𝑿 = (𝒙, 1)𝑇

𝒕

𝑹

Recall: 𝒂 × 𝒃 =

0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

𝑏1

𝑏2

𝑏3

= [𝒂×]𝒃

𝒙′𝑇[𝒕×]𝑹𝒙 = 0

𝑰 𝟎]
𝒙
1

𝑹 𝒕]
𝒙
1

= 𝑹𝒙 + 𝒕
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Epipolar Constraint: Calibrated case

•𝒙′ ∙ 𝒕 × 𝑹𝒙 = 0

𝒙 𝒙′

𝑿 = (𝒙, 1)𝑇

𝒕

𝑹

𝒙′𝑇[𝒕×]𝑹𝒙 = 0

Essential Matrix

𝒙′𝑇𝑬𝒙 = 0

𝑰 𝟎]
𝒙
1

𝑹 𝒕]
𝒙
1

= 𝑹𝒙 + 𝒕

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 1981
31

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


The essential matrix

𝒙 𝒙′

𝑿

𝒙′𝑇𝑬𝒙 = 0

𝑥′, 𝑦′, 1

𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

𝑥
𝑦
1

= 0
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The essential matrix: Properties

𝒙 𝒙′

𝑿

𝒙′𝑇𝑬𝒙 = 0

𝑬𝒙 is the epipolar line associated with 𝒙 (𝒍′ = 𝑬𝒙)

𝒍′

Recall: a line is given by 𝑎𝑥 +  𝑏𝑦 +  𝑐 =  0 or 𝒍𝑻𝒙 = 0 
where 𝒍 =  (𝑎, 𝑏, 𝑐)𝑇 and 𝒙 =  (𝑥, 𝑦, 1)𝑇 33



The essential matrix: Properties

𝒙 𝒙′

𝑿

• 𝑬𝒙 is the epipolar line associated with 𝒙 (𝒍′ = 𝑬𝒙)

• 𝑬𝑇𝒙′ is the epipolar line associated with 𝒙′ (𝒍 = 𝑬𝑇𝒙′)

• 𝑬𝒆 = 𝟎   and   𝑬𝑇𝒆′ = 𝟎
• 𝑬 is singular (rank two) and has five degrees of freedom

𝒙′𝑇𝑬𝒙 = 0

𝒍

34



Epipolar constraint: Uncalibrated case

• The calibration matrices 𝑲 and 𝑲′ of the two cameras are unknown

• We can write the epipolar constraint in terms of unknown normalized coordinates:

•𝒙norm
′𝑇 𝑬𝒙norm = 0, 

•where 𝒙norm = 𝑲−𝟏𝒙, 𝒙′norm = 𝑲′−𝟏𝒙′

𝒙 𝒙′

𝑿
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Epipolar constraint: Uncalibrated case

•𝒙norm
′𝑇 𝑬𝒙norm = 0

𝒙 𝒙′

𝑿

𝒙′𝑇𝑭𝒙 = 0, where 𝑭 = 𝑲′−𝑇𝑬𝑲−1

𝒙norm = 𝑲−𝟏𝒙

𝒙′norm = 𝑲′−𝟏𝒙′
Fundamental Matrix

Faugeras et al., (1992), Hartley (1992)
36

https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)


The fundamental matrix

𝒙 𝒙′

𝑿

𝒙′𝑇𝑭𝒙 = 0

𝒍 𝒍′

𝑥′, 𝑦′, 1

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑥
𝑦
1

= 0
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The fundamental matrix: Properties

𝒙 𝒙′

𝑿

𝒙′𝑇𝑭𝒙 = 0

• 𝑭𝒙 is the epipolar line associated with 𝒙 (𝒍′ = 𝑭𝒙)

• 𝑭𝑇𝒙′ is the epipolar line associated with 𝒙′ (𝒍 = 𝑭𝑇𝒙′)

• 𝑭𝒆 = 𝟎   and   𝑭𝑇𝒆′ = 𝟎
• 𝑭 is singular (rank two) and has seven degrees of freedom

𝒍 𝒍′
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Estimating the fundamental matrix

• Given: correspondences 𝒙 = (𝑥, 𝑦, 1)𝑇 and 𝒙′ = (𝑥′, 𝑦′, 1)𝑇
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Estimating the fundamental matrix

• Given: correspondences 𝒙𝒊 = (𝑥𝑖 , 𝑦𝑖 , 1)𝑇 and 𝒙𝒊
′ = (𝑥𝑖′, 𝑦𝑖′, 1)𝑇

• Constraint: 𝒙′𝑻𝑭𝒙 = 0

• 𝑥′, 𝑦′, 1

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑥
𝑦
1

= 0 𝑥′𝑥, 𝑥′𝑦, 𝑥′, 𝑦′𝑥, 𝑦′𝑦, 𝑦′, 𝑥, 𝑦, 1

𝑓11

𝑓12

𝑓13

𝑓21

𝑓22

𝑓23

𝑓31

𝑓32

𝑓33

= 0
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The eight point algorithm

⋮
𝑥′𝑥 𝑥′𝑦 𝑥′ 𝑦′𝑥 𝑦′𝑦 𝑦′ 𝑥 𝑦 1

⋮

𝑓11

𝑓12

𝑓13

𝑓21

𝑓22

𝑓23

𝑓31

𝑓32

𝑓33

= 𝟎

Homogeneous least squares to find 𝒇:

arg min
𝒇 =1

𝑼𝒇 2
2 Eigenvector of 𝑼𝑻𝑼 with 

smallest eigenvalue

𝑼
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Enforcing rank-2 constraint

• We know 𝑭 needs to be singular/rank 2. How do we force it to 
be singular?

• Solution: take SVD of the initial estimate and throw out the 
smallest singular value

𝑭init = 𝑼𝚺𝑽𝑇 𝚺 =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

𝑭 = 𝑼𝜮′𝑽𝑇

𝚺′ =
𝜎1 0 0
0 𝜎2 0
0 0 0

42



Enforcing rank-2 constraint

Initial 𝑭 estimate Rank-2 estimate

43



The Fundamental Matrix Song

http://danielwedge.com/fmatrix/ 44

http://danielwedge.com/fmatrix/


Large-scale SfM

45

• 2006: Photo Tourism 
(Snavely et al,, SIGGAPH’06)
• 3D reconstruction from internet 

images
• Large scale compute

• 2009: Building Rome in a Day 
(Agarwal et al. ICCV’09)
• Search “rome” on flickr
• Reconstruction: 150k images, 

21h, 500CPUs



Neural Rendering
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1850: Photosculpture

• 24 photographs of an object/person 

• Cut contour from wood

• Assemble radial sculpture

47



1986: The Rendering Equation

𝐿𝑜 𝑥, 𝜔𝑜 , 𝜆, 𝑡 = 𝐿𝑒 𝑥, 𝜔𝑜, 𝜆, 𝑡 + 𝐿𝑟(𝑥, 𝜔𝑜, 𝜆, 𝑡) 

48

Immel, David S.; Cohen, Michael F.; Greenberg, Donald P. "A radiosity method for non-diffuse environments”, SIGGRAPH 1986
Kajiya, James T."The rendering equation". Conference on Computer graphics and interactive techniques 1986

emitted radiance
(glowing things)

reflected radiance

How much light (of wavelength 𝜆) is leaving a point 𝑥 in the direction of 𝜔𝑜 at time 𝑡?



1986: The Rendering Equation

𝐿𝑟 𝑥, 𝜔𝑜, 𝜆, 𝑡 = න
Ω

𝑓𝑖 𝑥, 𝜔𝑖 , 𝜔𝑜, 𝜆, 𝑡 𝐿𝑖 𝑥, 𝜔𝑖 , 𝜆, 𝑡 𝜔𝑖 ⋅ 𝒏 𝑑𝜔𝑖  

49

bidirectional reflectance
distribution function

(BRDF)

incoming radiance at 𝑥
from direction 𝜔𝑖 

surface normal

𝒏



1965: The BRDF

𝑓𝑟 𝜔𝑖 , 𝜔𝑟 =
𝑑𝐿𝑟(𝜔𝑟)

𝐿𝑖 𝜔𝑖 𝜔𝑖 ⋅ 𝑛  𝑑𝜔𝑖

• Positivity: 𝑓𝑟 𝜔𝑖 , 𝜔𝑟 > 0

• Reciprocity: 𝑓𝑟 𝜔𝑖 , 𝜔𝑟 = 𝑓𝑟 𝜔𝑟 , 𝜔𝑖

• Energy conservation: 

∀𝜔𝑖 , න
Ω

𝑓𝑟 𝜔𝑖 , 𝜔𝑟 𝜔𝑟 ⋅ 𝑛 𝑑𝜔𝑟 ≤ 1

50
Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface". Applied Optics

diffuse specular mirror



Lightfield camera arrays

• Use many synchronized cameras to capture a scene from many 
angle simlutaneously

• Film use: The Matrix (1999)
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Neural Radiance Fields

• Input: Image collection

• Learning: mapping coordinates (x,y,z) to 
color and occupancy

• Output: rendering from novel viewpoints

52
Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis.“, ECCV 2020



Neural Fields

53

Magnetic Field
Neural Network 

(Φ)

Φ: ℝ2 → ℝ2

(x,y)

Eulerian Flow Field
[Koldora CC]

Neural Network 
(Φ)

Φ: ℝ2 → ℝ2

(x,y)

[Slide: Srinath Sridhar, Towaki Takikawa at CVPR ‘22 Tutorial on Neural Fields in Computer Vision ]



Neural Fields
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[Slide: Yiheng Xie, at CVPR ‘22 Tutorial on Neural Fields in Computer Vision ]

What we want to 

reconstruct:
What we can 

measure:

The bridge:

forward maps

Supervision

Depth Normal

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal

t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing

Radiance Field

Reconstruction Domain

Signed Distance Field

Reconstruction Domain Forward Map Sensor Domain



Neural Radiance Fields
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Slide credit: Angjoo Kanazawa, ECCV 2022 Tutorial Neural Volumetric Rendering for Computer Vision



56

Neural Field
𝑟

𝐼(𝑢)

R
G

B

𝐫, 𝐠, 𝐛, 𝝈MLP

− 
2

መ𝐼(𝑢) 𝐼(𝑢)

𝜎

Volume
Renderer

(𝐱, 𝐝) 

3D World

Neural Radiance Fields



(Direct) Volume Rendering

• Rendering a ray 𝑟 𝑡 = 𝑜 + 𝑡𝑑

𝐶 ≈ 

𝑖=1

𝑁

𝑇𝑖𝛼𝑖𝑐𝑖

• Visibility depends on opacity before

𝑇𝑖 =  ෑ

𝑗=1

𝑖−1

(1 − 𝛼𝑖)

• Opacity is a function of density
𝛼𝑖 = 1 − 𝑒−𝜎𝑖Δ𝑡

57

𝛼𝑖

𝑇𝑖

𝑡1

𝑡𝑁

colour

visibility opacity



Neural Radiance Fields

58
Slide credit: Angjoo Kanazawa, ECCV 2022 Tutorial Neural Volumetric Rendering for Computer Vision



NeRF Examples

59



NeRF Song

60



Diffusion Model as a Prior

61

generator

Poole, A Jain, JT Barron, B Mildenhall.
 "DreamFusion: Text-to-3D using 2D Diffusion” ICLR 2023.

add noise

diffusion model

denoised image

MSE loss

• No need to compute gradients from the diffusion model

• Any generator works



Textual Inversion

• Learn a new word “<e>” for a specific concept

• Freeze everything and train only the embedding of <e>

62R Gal, Y Alaluf, Y Atzmon, O Patashnik, AH Bermano, G Chechik, D Cohen-Or.
 "An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion." arxiv 2022.

Text 
Encoder

“an image of a <e>” diffusion model



Textual Inversion

63

Original image

Generated image:
“an image of a <e>”



Learning 3D Shapes

• Compute <e>

• Sample camera poses

• Render views (NeRF)

64Input image

reconst. view new view new view new view

diffusion loss diffusion loss diffusion loss

M
S

E
 lo

ss
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3D from large models

• Optimization only: no learning required

• Needs several tricks to converge (shading, regularization, “<e> 
from the side”, …)

• Photographer bias reflected in the reconstructions

66

The “Janus Problem”
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