
Generative Models
Computer Vision - Lecture 14
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Further Reading

• Slides from J Johnson

• Slides from R Gao

• Slides from B Wang

• CVPR 2022 Tutorial

• Course from P Holderrieth and E Erives
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https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture19.pdf
http://cs231n.stanford.edu/slides/2023/lecture_15.pdf
https://scholar.harvard.edu/files/binxuw/files/stable_diffusion_a_tutorial.pdf
https://cvpr2022-tutorial-diffusion-models.github.io/
https://diffusion.csail.mit.edu/


Basics: Generative Models

Dataset 𝐷 = 𝑥𝑖 1 ≤ 𝑖 ≤ 𝑁}

Inputs 𝑥𝑖

Outputs 𝑦𝑖

Learn a generator that generates samples from the same 
distribution as the dataset:

Training data: 𝑝data(x)

Generated samples: 𝑝model(x)

Learn generator such that 𝑝model(x) similar to 𝑝data(x)
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Discriminative vs. Generative

• Discriminative model:  learn 𝑝 𝑦 𝑥

• Generative model:   learn 𝑝 𝑥

• Conditional generative model: learn 𝑝 𝑥|𝑦

Density function: 𝑝 𝑥 ≥ 0, 𝑋׬ 
𝑝 𝑥 𝑑𝑥 = 1

Different values of 𝑥 compete for density. 
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Generative Models

Learn a probability distribution 𝑝 𝑥  over the domain 𝑥 ∈ 𝑋. 

“How likely will we find this image in the data?”

𝑝( ) 𝑝( ) 𝑝( ) 𝑝( )
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Recall: Bayes’ Rule

Bayes’ Rule lets us build generative models from other 
components.

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥

𝑝 𝑦
𝑝(𝑥)

Conditional 
generative 
model

Discriminative
model

Prior over 
labels

Generative 
model
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Basics: Generative Models

• Explicit: define and solve for the density 𝑝(𝑥)

• Implicit: sample from 𝑝(𝑥) without estimating the density for 
samples
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Generative Models

Explicit Models 
    can compute 𝑝(𝑥)

• Tractable Density
• Autoregressive models (MADE, 

NADE, PixelRNN, etc.)

• Approximate Density
• Variational Autoencoders

• Markov Chain

Implicit Models
     can only sample from 𝑝(𝑥)

• Direct
• GANs

• Diffusion Models

• Markov Chain
• GSN

Updated from Ian Goodfellow, Tutorial on GANs 2017
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Autoregressive Models

• Explicit model: fully visible belief network

• Chain rule decomposes the likelihood of an image into 
distributions of pixel intensities

𝑝 𝑥 = ෑ

𝑖=1

𝑛

𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

• Train by maximizing likelihood of training data.

• Main generative model in NLP.

Updated from Ian Goodfellow, Tutorial on GANs 2017
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Goal: Learning a distribution

• Potentially very complex and high dimensional!

• What is the probability that 𝑥 ∈ ℝ64×64×3 is an image of a 
face? 
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Autoregressive Distribution Estimation

• rearrange an image into a sequence

• now, task can be seen a sequence prediction problem

• What is the colour distribution of the next pixel?

…
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Autoregressive Distribution Estimation

𝑝 𝑥 = 𝑝 𝑥1  𝑝 𝑥2|𝑥1 ⋅ … ⋅ 𝑝 𝑥𝑁 𝑥1, … , 𝑥𝑁−1

…

𝑥

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥𝑁−1 𝑥𝑁

Pixel Recurrent Neural Networks
Van Oord A, Kalchbrenner N, Kavukcuoglu K, ICLR 2016

Connectionist learning of belief networks 
Neal RM,Artificial intelligence 1992

The neural autoregressive distribution estimator
Larochelle H, Murray I, AISTATS 2011

𝑝 𝑥 =  ෑ

𝑖=1

𝑁

𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)
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Autoregressive Distribution Estimations

• In general: 𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1) might still be very complicated.

• But images are easy: 

• we store them 8 bit per channel (RGB)

• 256 element softmax per channel and pixel

• models the exact distribution
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Sampling

𝑝(𝑥1)

𝑝 𝑥2|𝑥1

…

𝑝 𝑥𝑁 𝑥1, … , 𝑥𝑁−1

𝑝 𝑥3|𝑥1, 𝑥2
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Inference

𝑝(𝑥1)

𝑝 𝑥2|𝑥1

…

𝑝 𝑥𝑁 𝑥1, … , 𝑥𝑁−1

𝑝 𝑥3|𝑥1, 𝑥2

                        
                     

                        
                     

                        
                     

                        
                     

0.12

0.94

0.86

0.99

𝑝 𝑥 = 𝑝 𝑥1  𝑝 𝑥2|𝑥1  𝑝(𝑥3|𝑥1, 𝑥2) ⋅ … ⋅ 𝑝 𝑥𝑁 𝑥1, … , 𝑥𝑁−1

0.12

0.94

0.86 0.99
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Learning - NN

…

𝑝(𝑥1)

𝑝 𝑥2|𝑥1

…

𝑝 𝑥𝑁 𝑥1, … , 𝑥𝑁−1

𝑝 𝑥3|𝑥1, 𝑥2

… …

𝑥1

𝑥2

𝑥3

𝑥𝑁−1

layer 1 layer 2

𝑝 𝑥4|𝑥1, 𝑥2, 𝑥3

The neural autoregressive distribution 
estimator

Larochelle H, Murray I
AISTATS 2011
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Learning - CNN

• Idea: mask the weights of the convolutions

Pixel Recurrent Neural Networks
Van Oord A, Kalchbrenner N, 

Kavukcuoglu K
ICLR 2016

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

Mask A

for the first layer

1 1 1 1 1

1 1 1 1 1

1 1 1 0 0

0 0 0 0 0

0 0 0 0 0

Mask B

for all other layers
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Learning – CNN Receptive Field

x

blind spot
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Results

Conditional Image Generation with PixelCNN Decoders
Van den Oord A, Kalchbrenner N, Espeholt L, Vinyals O, Graves A

NeurIPS 2016

Pixel Recurrent Neural Networks
Van Oord A, Kalchbrenner N, 

Kavukcuoglu K
ICLR 2016
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Dall-E

• Autoregressive model made fast by first learning a 
compressed discrete image representation

• Generation in “token-space”

• Conditioned on text prompts

• Large-scale training 400M image-text pairs

Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya 
Sutskever. "Zero-shot text-to-image generation." In International Conference on Machine Learning, pp. 

8821-8831. PMLR, 2021.
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VQ-VAE

• Down-sample and compress the image into a lower-
dimensional, discrete representation.

• Bottleneck: replace activations with closest vector from a 
learned codebook.

21Neural Discrete Representation Learning
Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu, 2017



Dall-E

• One of the first examples of very good generalisation:

“an illustration of a baby daikon radish in a tutu walking a dog”
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Recall: Neural (Flow) Fields

23

Magnetic Field
Neural 

Network (Φ)

Φ: ℝ2 → ℝ2

(x,y)

Eulerian Flow Field
[Koldora CC]

Neural 
Network (Φ)

Φ: ℝ2 → ℝ2

(x,y)

[Slide: Srinath Sridhar, Towaki Takikawa at CVPR ‘22 Tutorial on Neural Fields in Computer Vision ]



Converting Samples

• Idea: convert samples from 
a simple distribution into 
samples from the data 
distribution

• Learn a neural field to 
represent the flow from 𝑥𝑇 
to 𝑥0

• 𝑥𝑡−1 = 𝑓 𝑥𝑡 + 𝑥𝑡
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[Figure: Yaron Lipman]

𝑥𝑇

𝑥0



Flow between distributions

25
adapted from https://cvpr2022-tutorial-diffusion-models.github.io/

𝑥𝑇 𝑥0𝑥𝑡



Diffusion Models

• Generate an image in small steps from (Gaussian) noise 𝜖

• Instead of directly learning a model for 𝑝𝜃(𝑥|𝜖), learn small 
steps along a Markov chain

𝑥𝑇 𝑥0𝑥1𝑥𝑇−1

…

Diffusion process 𝑞(𝑥𝑡|𝑥𝑡−1)

Reverse diffusion process: 𝑝𝜃 (𝑥𝑡−1|𝑥𝑡) 
26



Noise Schedule

• Learn a model to generate 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) 

• Construct the diffusion process:

 𝑞 𝑥𝑡 𝑥𝑡−1 =  𝒩 𝑥𝑡; 1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼

• 𝛽𝑡 is a variance schedule – often fixed 

• There is a closed-form solution to sample 
𝑥𝑡 from 𝑥0

𝑞 𝑥1:𝑇 𝑥0 = ෑ
𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1)

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." NeurIPS’21.

27Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain, Pieter Abbeel, 2020



Noise Schedule

𝑞 𝑥𝑡 𝑥𝑡−1 =  𝒩 𝑥𝑡; 1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼

Random noise image 𝜖𝑡~𝒩 0, 𝐼

𝑥𝑡 = 𝛼𝑡𝑥𝑡−1 + 1 − 𝛼𝑡𝜖𝑡−1

𝛼𝑡 = 1 − 𝛽𝑡 and ത𝛼𝑡 = σ𝑖=1
𝑡 𝛼𝑖

Applying iteratively yields:
𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖
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Noise Schedule

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖

Not exactly linear interpolation.
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Noise Schedule

30

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖

It looks like steps > 500 are pure noise, but they are not.

These are very important for the model to learn.



Training a diffusion model

• Generate training examples (𝑥𝑡 , 𝜖𝑡)

 

• Loss 𝑓 𝑥𝑡, 𝑡 − 𝜖𝑡 2
2    (simple L2 loss)
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Sampling from a diffusion model

Sample a noise image: 𝑥𝑇~𝒩 0, 𝐼

for 𝑡 = 𝑇, … , 1:

 𝑧~𝒩 0, 𝐼  𝐢𝐟 𝑧 > 1 𝐞𝐥𝐬𝐞 0

 𝑥𝑡−1 =
1

𝛼𝑡
𝑥𝑡 −

1−𝛼𝑡

1−ഥ𝛼𝑡
𝑓 𝑥𝑡 , 𝑡 + 𝛽𝑡 𝑧

Evaluate diffusion model 𝑇 times to generate one sample.

32Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain, Pieter Abbeel, 2020



Predicting images instead of noise

• An equivalent model can be trained by learning to predict 𝑥0 
instead: 𝑓 𝑥𝑡, 𝑡 − 𝑥0 2

2

• We can use 𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖 to convert between 
sampling steps and noise.

• In practice predicting noise works often a bit better: more 
diversity during training. 

• Predict 𝑥0 model has the same target for every timestep: 
easier overfitting/memorisation.
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Large Scale Diffusion Models

• Conditional diffusion: trained conditional on text input.

• Large scale training: >1B images (&text)

• Several details:
• Often more stable to predict noise instead of the clean sample. One 

can always compute one from the other.

• Noise schedule is important.

• Latent diffusion.
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Latent Diffusion

• Diffusion needs many evaluations of the noise estimator. 

• We can make it cheaper but first compressing the image into a 
latent representation.

• Train an encoder decoder architecture: VQ-VAE.

• E.g.: D=4, H’ = H/4, W’ = W/4

35

Enc Dec

latent space
D x H’ x W’

LS

3 x H x W 3 x H x W



Stable Diffusion 1

• Conditional diffusion model.

• Latent diffusion.

• U-Net architecture + cross attention layers to text & timestep
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Note: Add Time Dependency

• The score function is timestep-dependent. 
• 𝑓 𝑥, 𝑡

• Add time dependency

• Assume time dependency is spatially 
homogeneous. 

• Add one scalar value per channel 𝑓(𝑡) 

• Parametrize 𝑓(𝑡) by MLP / linear of Fourier 
basis. 

𝒕⊕

M
L
P

Time 
embedding

[𝐬𝐢𝐧 𝝎𝒊𝒕 ,
𝐜𝐨𝐬 𝝎𝒊𝒕 ,

… ]



Unet in Stable 
Diffusion 1

(conv_in): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(time_proj): Timesteps()
(time_embedding): TimestepEmbedding

  (linear_1): Linear(in_features=320, out_features=1280, bias=True)
  (act): SiLU()
  (linear_2): Linear(in_features=1280, out_features=1280, bias=True)

(down_blocks):
  (0): CrossAttnDownBlock2D
  (1): CrossAttnDownBlock2D
  (2): CrossAttnDownBlock2D
  (3): DownBlock2D

(up_blocks):
  (0): UpBlock2D
  (1): CrossAttnUpBlock2D
  (2): CrossAttnUpBlock2D
  (3): CrossAttnUpBlock2D

(mid_block): UNetMidBlock2DCrossAttn
  (attentions):
  (resnets):

(conv_norm_out): GroupNorm(32, 320, eps=1e-05, affine=True)
(conv_act): SiLU()
(conv_out): Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))



SiLU: Sigmoid Linear Unit

• silu 𝑥 = 𝑥𝜎 𝑥

• 𝜎 𝑥 =
𝑒𝑥

1+𝑒𝑥

• Gradients are not cut off 
before 0

• Can be more stable than ReLU.

• Higher computational cost.

39
Elfwing et al., Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning, 2017



Large Scale Diffusion Models

40DeepFloyd IF Dalle-2 Bing Midjourney SDXL



Flux

• Code/models

• Transformer-based 
architecture

• Latent diffusion 
model

• Flow-based model

41
Diagram credit @nrehiew_ 

https://github.com/black-forest-labs/flux
https://www.reddit.com/r/LocalLLaMA/comments/1ekr7ji/fluxs_architecture_diagram_dont_think_theres_a


Learning better prompts

• Original: a cat drinking a pint of beer

• Enhanced: A whimsical feline sipping 
a frothy pint of golden ale, the 
condensation on the glass glistening 
in the warm light of a cozy pub, the 
cat's whiskers twitching as it savors 
the rich flavor and aroma of the 
beer, its paws curled around the 
glass as it sits on a worn wooden 
stool, surrounded by the rustic 
charm of a classic British pub.

42

flux-ai.org, Feb’2025



Evaluation

• Evaluation of explicit generative models is easy:
• Measure log  𝑝 𝑥  on a test set. 

• Whichever model has higher probability wins. 

• Evaluation of implicit models is very difficult.
• We can only sample from the model.

• We do not know how to measure the quality/probability of a 
sample.

43



Human Evaluation

• Ask people which model they prefer.

• Preference is vague. 

• Also include faithfulness to text 
prompt, realism, etc.

• Difficult to scale/use to improve 
model.

44

Example: Emu vs. SDXL

Dai et al., Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack, 2023
Podell et al., SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis, 2023



Fréchet Distance

• Dog and owner walk on separate paths.

• Can only go forward.

• FD: the shortest possible leash that 
allows both to complete the path.

45
Heusel et al., GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017

Maurice Fréchet,1878-1973

https://en.wikipedia.org/wiki/Ren%C3%A9_Maurice_Fr%C3%A9chet


FID: Fréchet Inception Distance

• Measure the distance between generated images and real 
images.

• Measure the distance in feature space (Inception v3 model).

• Input: feature extractor 𝑓 𝐼 ∈ ℝ𝑑 , real imges ℐ𝑟, samples ℐ𝑔.

• Compute 𝑓 ℐ𝑟  and 𝑓 ℐ𝑔

• Fit Gaussians to each set: 𝒩(𝜇𝑟 , Σ𝑟), 𝒩(𝜇𝑔, Σ𝑔)

• 𝑑𝐹 = 𝜇𝑟 − 𝜇𝑔 2

2
+ tr Σ𝑟 + Σ𝑔 − 2 Σ𝑟Σ𝑔

1

2

46
Heusel et al., GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017



FID

• Real images: pick a dataset (e.g. ImageNet)

• Aligns to a certain degree with human judgement.

• Is a popular metric and often used.

• We know it is not very good, but we don’t have good alternatives.

• Many others have been proposed but there is no clear winner.
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Video Diffusion Models

• Image architecture 2D U-Net.

• Video architecture 3D U-Net.

• Maybe: share 2D U-Net 
across frames, add time 
attention.

• Train on 2D, then video.

48
Blattmann et al., Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets, 2023
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Generative Models + Geometry

• Instead of reconstructing 
a scene, can we just 
generate new views?

• Take camera parameters 
(extrinsics and intrinsics) 
as input!
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