Generative Models

Computer Vision - Lecture 14



Further Reading

* Slides from | Johnson
e Slides from R Gao
» Slides from B Wang

« CVPR 2022 Tutorial
e Course from P Holderrieth and E Erives



https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture19.pdf
http://cs231n.stanford.edu/slides/2023/lecture_15.pdf
https://scholar.harvard.edu/files/binxuw/files/stable_diffusion_a_tutorial.pdf
https://cvpr2022-tutorial-diffusion-models.github.io/
https://diffusion.csail.mit.edu/

Basics: Generative Models

Dataset D = {x;|1 <i < N}
Inputs x;

Outputsyy;

Learn a generator that generates samples from the same
distribution as the dataset:

Training data: pgatq (%)
Generated samples: pyyodelX)

Learn generator such that py,oge](%) similar to pg4e4 (%)



Discriminative vs. Generative

 Discriminative model: earn p(y|x)
 Generative model: earn p(x)
« Conditional generative model: learn p(x|y)

Density function: p(x) 20, [, p(x)dx =1

Different values of x compete for density.



Generative Models

Learn a probability distribution p(x) over the domain x € X.
“How likely will we find this image in the data?”

p(ﬁ) p(F) p(&D)




Recall: Bayes’ Rule

Bayes' Rule lets us build generative models from other
components.

Conditional

. Generative
generative =y X = X
Prior over

labels



Basics: Generative Models

« Explicit: define and solve for the density p(x)

 Implicit: sample from p(x) without estimating the density for
samples



Generative Models

Explicit Models
can compute p(x)

 Tractable Density

« Autoregressive models (MADE,
NADE, PixelRNN, etc.)

» Approximate Density

e Variational Autoencoders
« Markov Chain

Implicit Models
can only sample from p(x)

 Direct
* GANS

e Diffusion Models

 Markov Chain

* GSN

Updated from lan Goodfellow, Tutorial on GANs 2017



Autoregressive Models

« Explicit model: fully visible belief network

 Chain rule decomposes the likelihood of an image into
distributions of pixel intensities

n
p(X) — Hp(xilxl' ""xi—l)
=1

 Train by maximizing likelihood of training data.
« Main generative model in NLP.

Updated from lan Goodfellow, Tutorial on GANs 2017



Goal: Learning a distribution

 Potentially very complex and high dimensional!

« What is the probability that x € R®**°**3 s an image of a
face?
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* rearrange an image into a sequence
* now, task can be seen a sequence prec

« What is the colour distribution of the next

iction problem

nixel?
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Autoresg

Connectionist learning of belief networks
Neal RM,Artificial intelligence 1992

" () = () plralx) -

X4 Xs XN-1 XN

pxenlxq, o xy—1)

N
pe) = | [Pl xio)
i=1

The neural autoregressive distribution estimator
Larochelle H, Murray I, AISTATS 2011

Pixel Recurrent Neural Networks
Van Oord A, Kalchbrenner N, Kavukcuoglu K, ICLR 2016
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Autoregressive Distribution Estimations

In general: p(x;|x4, ..., x;—1) mMight still be very complicated.

But images are easy:

we store them 8 bit per channel (RGB)

256 element softmax per channel and pixel

models the exact distribution



Sampling

p(x:) 1] L
p(xz]x1) II| .

p(x3]x1, x2) |I| .

p(xylxy, oy xy-1) |I| .
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Inference

p(x) = p(xy) p(x2|x1) p(x3]x1,X%2) * oo (XN |X, oo, XN—1)
0.12

0.94

0.86 0.99
p(x1) |I|
p(xz|x1) |I|
p(x3]x1, x7) |I|

p(xylxy, o, xn_1) |I|

0.12
0.94
0.86

0.99
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Learning - NN

layer 1

p(x3]x1,x3)

p(x4]xq, X2, %3)

p(xn|xy, ooy Xn—1)

The neural autoregressive distribution
estimator

Larochéfte H, Murray |

AISTATS 2011



Learning - CNN

* |[dea: mask the weights of the convolutions

111111 1/1(111]1

111111 1/1(111]1

(RN 0 0 O 1011 B

O 00 0 O O 00 OO

O 00 0 O O 00 0O
Mask A Mask B

for the first layer for all other layers

Pixel Recurrent Neural Networks
Van Oord A, Kalchbrenner N,
gvukcuoglu K

ICLR 2016



Learning - CNN Receptive Field

blind spot




Results

occluded completions original

Pixel Recurrent Neural Networks
Van Oord A, Kalchbrenner N,
Kavukcuoglu K
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Afncan elephant Coral Reef

Conditional Image Generation with PixelCNN Decoders
Van den Oord A, Kalchbrenner N, Espeholt L, Vinyals O, Graves A
NeurlPS 2016



Dall-E

« Autoregressive model made fast by first learning a
compressed discrete image representation

« Generation in “token-space”
« Conditioned on text prompts
 Large-scale training 400M image-text pairs

TEXT PROMPT  an armchair in the shape of an avocado....

AI-GENERATED
IMAGES

_—

Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. "Zero-shot text-to-image generation." In International Conference on MachidLearning, pp.
8821-8831. PMLR, 2021.



VQ-VAE

« Down-sample and compress the image into a lower-
dimensional, discrete representation.

» Bottleneck: replace activations with closest vector from a
learned codebook.

/e e.e, 8, )
Embedding
Space
S
D vL
— T —
q(z|x) & CNN
CNN e
3 1 Oss
Z (x) z 2 z (x)
53
Encoder Decoder

Neural Discrete Representation Learning
Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu, 2017
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Dall-E

* One of the first examples of very good generalisation:
“an illustration of a baby daikon radish in a tutu walking a dog"
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Recall: Neural (Flow) Fields
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[Slide: Srinath Sridhar, Towaki Takikawa at CVPR ‘22 Tutorial on Neural Fields in Computer Vision ] [Koldora CC]
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Converting Samples

* [dea: convert samples from Pinit Pdata
a simple distribution into
samples from the data
distribution

* Learn a neural field to
represent the flow from x;
to x,

* Xe—q1 = f(xe) + x¢

[Figure: Yaron Lipman]



Flow between distributions

JV\
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adapted from https://cvpr2022-tutorial-diffusion-models.github.io/



Diffusion Models

« Generate an image in small steps from (Gaussian) noise €

* Instead of directly learning a model for py(x|€), learn small
steps along a Markov chain

Diffusion process q(x;|x:—1)

A

Reverse diffusion process: pg (x;—1|xt)

26



Noise Schedule

« Learn a model to generate pg (xs—1|x;)
 Construct the diffusion process:

q(xelxe—1) = N(xt; \/1 — ,tht—pﬁtl)
* B, is a variance schedule - often fixed

* There is a closed-form solution to sample
x; from x,

T
aCrarlo) = | | aGelny)

t=1

Denoising Diffusion Probabilistic Models 27
Jonathan Ho, Ajay Jain, Pieter Abbeel, 2020 Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." NeurlPS'21.



Noise Schedule

q(xelxe—q) = N(Xti \/1 — ,tht—1»,8t1)

Random noise image ¢,~N (0, 1)

xt —_ \/atxt_l ~+ \/1 — atEt_l

ap=1-pf.and @, =X q;

Applying iteratively yields:

Xt=\/6_l_txo+\/1—67t6




Noise Schedule

xt=\/67_tx0+\/1—67t6

Not exactly linear interpolation.

Var V1-a:
1.0 1.0 -
0.8 0.8
0.6 0.6 -
0.4 1 0.4 -
0.2 0.2 1
0.0 1 0.0 -

T T T T T T T T T T
0 200 400 600 800 100C 0 200 400 600 800 1000



Noise Schedule

xXp = JTxg + /1 — @e

Step: 0 Step: 100 Step 200 Step 300 Step 400 Step 500 Step: 60 : Step 1000

It looks like steps > 500 are pure noise, but they are not.
These are very important for the model to learn.
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Training a diffusion model

« Generate training examples (x;, €;)

e Loss |f(x,t) — €5 (simple L2 loss)

31



Sampling from a diffusion model
Sample a noise image: x~N(0,1)

fort=T,.. 1:
z~N(0,1)if z > 1 else 0

Xt—1 = %(xt \}lf(xt: t)) + \/_Z

Evaluate diffusion model T times to generate one sample.

Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain, Pieter Abbeel, 2020



Predicting images instead of noise

* An equivalent model can be trained by learning to predict x,
instead: |f(x,, t) — x5

» We can use x; = ,/@;xy + /1 — @€ to convert between
sampling steps and noise.

* In practice predicting noise works often a bit better: more
diversity during training.

 Predict x, model has the same target for every timestep:
easier overfitting/memorisation.



Large Scale Diffusion Models

 Conditional diffusion: trained conditional on text input.
 Large scale training: >1B images (&text)

e Several details:

« Often more stable to predict noise instead of the clean sample. One
can always compute one from the other.

* Noise schedule is important.
- Latent diffusion.



Latent Diffusion

« Diffusion needs many evaluations of the noise estimator.

« We can make it cheaper but first compressing the image into a
latent representation.

» Train an encoder decoder architecture: VQ-VAE.
» E.g.: D=4, H'= H/4, W' = W/4

E—

latent space 3XHxXW
DxH xW

35



Stable Diffusion 1

e Conditional diffusion model.
e Latent diffusion.

« U-Net architecture + cross attention layers to text & timestep

- Latent Space
-I __ Diffusion Process ———»

Denoising U-Net €

t}

ondltlonm

emanti
Ma
Text
Repres |

entatuons
\ mages

DQ 1\9 v Ez

deno:smg step crossattention switch  skip connection concat

U




Note. Add Time Dependency

@l | =
Time

embedding

[sin w;t,

cos w;t,
« Add one scalar value per channel f(t) =

« The score function is timestep-dependent.
* fx,t)

- Add time dependency

« Assume time dependency is spatially
homogeneous.

« Parametrize f(t) by MLP / linear of Fourier
basis.



P — p——

Unet in Stable | | | |
. . (conv_in): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Diffusion 1 (me_projs Tmesteps)

(time_embedding): TimestepEmbedding
(linear_1): Linear(in_features=320, out_features=1280, bias=True)
(act): SiLU()
(linear_2): Linear(in_features=1280, out_features=1280, bias=True)
(down_blocks):
(0): CrossAttnDownBlock2D
(1): CrossAttnDownBlock2D

Denoising U-Net €
" ’ (2): CrossAttnDownBlock2D

— . //’ " bléi{(:s[)).ownBlockZD
Q|| Q 7 Q| @ " (0): UpBlock2D
KV KV Jil KV KV (1): CrossAttnUpBlock2D
= = (2): CrossAttnUpBlock2D
T (3): CrossAttnUpBlock2D

(mid_block): UNetMidBlock2DCrossAttn
(attentions):
(resnets):
(conv_norm_out): GroupNorm(32, 320, eps=1e-05, affine=True)
(conv_act): SiLU()
(conv_out): Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))



SiLU: Sigmoid Linear Unit

* silu(x) — XO'(X) SiLU()
eX 54
) O-(x)  1+eX s
- Gradients are not cut off 5 G_
before O :
 Can be more stable than ReLU.
 Higher computational cost. o 4 2

Input

Elfwing et al., Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning, 2017



Large Scale Diffusion Models

a cat drinking a pint of beer

a cute robot artist
painting on an easel
concept art

a green sign that says
"Very Deep Learning"
and is at the edge
of the Grand Canyon

Lea rmngAN

rﬂ ’7

DeepFond IF

ELE
DWNG

Dalle-2
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Flux

« Code/models

e Transformer-based
architecture

e Latent diffusion
model

* Flow-based model

Diagram credit @nrehiew_

1) Get Schedule
2) Sounple for Each 'T-imestep ‘\\\
3) Latent = Latent + (prev - |
current ‘times'tep) * Predic‘t}on



https://github.com/black-forest-labs/flux
https://www.reddit.com/r/LocalLLaMA/comments/1ekr7ji/fluxs_architecture_diagram_dont_think_theres_a

Learning better prompts

 Original: a cat drinking a pint of beer

- Enhanced: A whimsical feline sipping
a frothy pint of golden ale, the
condensation on the glass glistening
in the warm light of a cozy pub, the
cat's whiskers twitching as It savors
the rich flavor and aroma of the
beer, its paws curled around the

glass as it sits on a worn wooden

stool, surrounded by the rustic
charm of a classic British pub.

flux-ai.org, Feb'2025
42



Fvaluation

 Evaluation of explicit generative models is easy:

» Measure log( p(x)) on a test set.
« Whichever model has higher probability wins.

* Evaluation of implicit models is very difficult.
« We can only sample from the model.

« We do not know how to measure the quality/probability of a
sample.



Human Evaluation

 Ask people which model they prefer.

win (%) tie (%)
68.4 2.1

lose (%)
29.5

Example: Emu vs. SDXL

 Preference is vague.

e Also include faithfulness to text
prompt, realism, etc.

» Difficult to scale/use to improve
model.

Dai et al., Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack, 2023
Podell et al., SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis, 2023

A decadent chocolate treat adorned
with decorative sugar art

Utensils, a bottle, and a glass positioned
behind a stove

A beaver dressed in a vest, wearing
glasses and a vibrant necktie, in a library

a cow eating a green leafy plant

44



Frechet Distance

* Dog and owner walk on separate paths.
« Can only go forward.

 FD: the shortest possible leash that
allows both to complete the path.

4

<7

Heusel et al., GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017

Maurice Fréchet,1878-1973

45


https://en.wikipedia.org/wiki/Ren%C3%A9_Maurice_Fr%C3%A9chet

FID: Fréchet Inception Distance

« Measure the distance between generated images and real
Images.

« Measure the distance in feature space (Inception v3 model).

» Input: feature extractor f(I) € R%, real imges J,, samples 7,.
» Compute £(3,) and f(3,)
» Fit Gaussians to each set: M (u,, Z,), NV (g, Zg)

5 1
*dp = H:ur - HgHZ T (ZT +2g Z(ZTZQ)Z)

Heusel et al., GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017



FID

« Real images: pick a dataset (e.g. ImageNet)

« Aligns to a certain degree with human judgement.

* |Is a popular metric and often used.

« We know it is not very good, but we don’t have good alternatives.

« Many others have been proposed but there is no clear winner.



Video Diffusion Models

 Image architecture 2D U-Net.
* Video architecture 3D U-Net.

« Maybe: share 2D U-Net
across frames, add time
attention.

* Train on 2D, then video.

48

Blattmann et al., Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets, 2023












Shadows Don’t Lie and Lines Can’t Bend!
Generative Models don’t know Projective Geometry...for now

Ayush Sarkar*! Hanlin Mai*!  Amitabh Mahapatra*!  Svetlana Lazebnik!
D.A. Forsyth!  Anand Bhattad?
1University of Illinois Urbana-Champaign  ?Toyota Technological Institute at Chicago
https://projective-geometry.github.io/

Generated Image Shadow Errors Detected Shadow Errors Vanishing Point Errors Detected Perspective Errors 52



Generative Models + Geometry

* Instead of reconstructing
a scene, can we just
generate new views?

« Take camera parameters Multi-View Diffusion Model
(extrinsics and intrinsics)
as input!

53
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