Representation Learning

Computer Vision – Lecture 17

Further Reading

- Slides from <u>S Savarese, A Zamir</u>
- Slides from <u>F Li</u>
- Slides from <u>A Geiger</u>

So far: Task Learning

• Learn a function from input to task output.

I dare not speak of what I have done. Such twisted thoughts overtook my mind and now I am sorry to say that I have done the deed. I have murdered the King of Scotland, King Duncan. After naming me the Worthy Thane of Cawdor, this is how I repay

him. I have betrayed him in the most unimaginable way a person possibly could, and I've been disloyal to him, just like I have to Banquo whom I have lost as a dear friend. I wish that I had never done such a treacherous thing, as I am afraid that *I shall sleep no more*. I was waiting anxiously for my Lady to sound the bell that called me to do the deed. But before she did, a symbol of the supernatural

appeared before my eyes. The dagger of the mind captured me and the handle was to my hand yet I couldn't grasp it, but I could see thee still. knew not whether to follow or to discard it from my eyes, but the false creation remained. As I stepped closer to Duncan's room, I thought that I would panic

As I stepped closer to Juncan's room, i thought man's woung pame and freeze, but when I got nearer, a sickening infought made me feel like I was doing the right thing! As soon as I heard the bell I knew that it was the bell summoning me. I heard him pleading as the dagger pierced through his skin,

Macbeth was guilty.

Slide adapted from S Savarese

So far: Task Learning

- Learn a function from input to task output.
- Representation Learning: general representation + task head

Representations

Slide adapted from S Savarese

5

Representation Learning

Supervised

Unsupervised

- Given a task, learn a representation for it.
- Representation is often constrained to task(s).

- Given only data, find a representation for it.
- Representation often does not align exactly with tasks.
- Part of Lecture 18

• today

Handcrafting Representations

- Was the only way for a long time.
- (almost) Worked for many important applications:
 - Image Retrieval
 - Structure-from-motion
 - Face detection
 - etc.
- Why alternatives?
 - Ćan't quite find the discriminative signature for a problem.
 - Discriminative signature can be found, but hard to approach programmatically.
 - Too many contributing factors to the problem.
 - Fusion non-trivial. Rule-based fusion outruled.
 - Fusion of contributing factors itself a comparably complex representation problem.

Correspondences

Point correspondences estimated by a classic algorithm: SIFT

Recall: SIFT Descriptor

- Compute edge orientations and global orientation.
- Rotate all edges so that the global orientation is "up".
- Split the local area around the keypoint into 4x4=16 regions.
- Compute edge histograms (8 directions) for each region.
- Concatenate histograms: descriptor 128 dimensional vector.

Image gradients

Keypoint descriptor

Learning a Keypoint Descriptor

- Use a dataset with point correspondences.
- Extract patches around keypoints.
- Positives from matching keypoints.
- Negatives from random keypoints.
- Train a model to predict the similarity between two patches.

Local Feature Learning Dataset

Low-level matching architectures

Low-level matching: qualitative results

true positives

false negatives

true negatives

false positives

Handcrafted vs Learned features

LIFT: Learned Invariant Feature Transform

- Learn a keypoint detector.
- Learn a keypoint orientation predictor.
- Learn a keypoint descriptor.

LIFT

- Works well in domains close to the training data.
- Slower than SIFT.

Representation Learning Losses

- Given a set of samples x_i we learn a function that maps each sample into an embedding space $f(x_i) = \phi_i \in \mathbb{R}^d$.
- To learn *f* we need a loss function that acts on representations.
- Training data comes with positive $x_{i,j}^+$ and negative examples $x_{i,k}^-$ for each sample x_i (or you can construct them easily).

 χ_i^+

Cosine Similarity

- Cosine similarity: cosine of the angle between embedding vectors.
- Cosine is 1 if the embeddings align, 0 if orthogonal, -1 if opposite.

$$f(x) = \phi$$
$$\hat{\phi} = \frac{\phi}{\|\phi\|}$$

$$S_{\cos}(\phi_i,\phi_j) = \hat{\phi}_i^T \, \hat{\phi}_j$$

Cosine Similarity

• For each sample, we maximise the similarity with its positives, and minimise similarity with its negatives.

$$\mathcal{L}_{\cos}(\phi_{i}) = -\frac{1}{J_{i}} \sum_{j=1}^{J_{i}} S_{\cos}(\phi_{i}, \phi_{i,j}^{+}) + \frac{1}{K_{i}} \sum_{k=1}^{K_{i}} S_{\cos}(\phi_{i}, \phi_{i,k}^{-})$$

• Often select one random positive and one random negative for faster loss approximation.

$$\mathcal{L}_{\cos}(\phi_i) = -\mathcal{S}_{\cos}(\phi_i, \phi_i^+) + \mathcal{S}_{\cos}(\phi_i, \phi_i^-)$$

Negatives

• Why do we need negatives?

• Degenerate solution: f(x) = c predicts a constant for all x.

$$\mathcal{L}_{\cos}(f(x_i), f(x_j)) = -\mathcal{S}_{\cos}(c, c) = -1$$

- This minimises the loss for all training samples
- But: the representation is useless.

Triplet Loss

- Cosine similarity forces positive pairs to be almost identical (colinear) and negatives to be fully dissimilar.
- Often: select one random positive and one random negative for faster loss approximation.
- Triplet: anchor, positive, negative (ϕ, ϕ^+, ϕ^-)
- Idea: relative loss.
- Similarity between positive pair should be greater than similarity of negative pair.

Triplet Loss

Similarity between positive pair should be greater than similarity of negative pair.

$$\mathcal{L}_{\text{triplet}}(\phi,\phi^+,\phi^-) = \max(0,\mathcal{S}(\phi,\phi^-) - \mathcal{S}(\phi,\phi^+) + \epsilon)$$

$$\begin{array}{l} \text{Minimum: } \mathcal{L}_{\text{triplet}} = 0 \\ \text{if } \mathcal{S}(\phi, \phi^+) > \mathcal{S}(\phi, \phi^-) + \epsilon \text{ for a margin } \epsilon > 0. \end{array} \end{array}$$

Can use any similarity/distance metric :

$$\max(0, \|\phi - \phi^+\| - \|\phi - \phi^-\| + \epsilon)$$

Φ

training

Similarity vs. Distance

- Similarity
 - Cosine similarity, correlation
 - Intersection over Union
 - 0 ...
- Distance
 - Euclidian distance (L1, L2, ...)
 - Manhattan distance
- Remember: minimise distance, maximise similarity.

Efficiency Considerations

- The triplet loss uses three function evaluations for each loss $f(x), f(x^+), f(x^-)$.
- Can we do better?
- $f(x) = \phi$ is slow, while $\mathcal{L}(\cdot)$ is much faster in comparison.
- Find a way to use each ϕ multiple times.
- Idea: in a training batch, we can use most other samples as negatives too.

Efficiency

Bate

- Construct a training batch such that
 - each sample x_i has exactly one positive pair x_i^+
 - all other samples x_i (and x_i^+) are negatives to x_i (and x_i^+)
 - Example: include exactly two images of each class.
- Now we can reuse the computed embeddings for every sample

$$\sum_{\substack{j \neq i \\ l \neq i}} \mathcal{L}_{triplet}(\phi_i, \phi_i^+, \phi_j) + \mathcal{L}_{triplet}(\phi_i, \phi_i^+, \phi_j^+)$$

th of 6N samples. Before: 2N loss evals . Now: 4N(2N - 1)

Contrastive Loss

• Simplify notation: i^+ is the index of the positive pair to *i*.

$$-\log \frac{\exp(\mathcal{S}(\phi_i, \phi_{i^+}))}{\sum_{k=1}^{B} \exp(\mathcal{S}(\phi_i, \phi_k))}$$

- Minimised by large numerator and small denominator.
- Same ides: maximise $\mathcal{S}(\phi_i, \phi_i^+)$ and minimise all other similarities.

Recall: Softmax Cross-entropy loss

Soft-max classifier for *K* classes C_k : $p(C_k|x) = \operatorname{softmax}_k f(x) = \frac{\exp f_k(x)}{\sum_j \exp f_j(x)}$

Cross-entropy:

$$-\sum_{k}^{K} p_{GT}(C_k, x) \log(p(C_k|x))$$

Since all $p_{GT}(C_k|x)$ are zero, except the target class C_{GT} , i.e. $p_{GT}(C_{GT}, x) = 1$, this simplifies to

$$-\log(p(C_{GT}|x)) = -\log\frac{\exp f_{GT}(x)}{\sum_{j} \exp f_{j}(x)}$$

Contrastive Loss

$$-\log \frac{\exp(\mathcal{S}(\phi_i, \phi_{i^+}))}{\sum_{k=1}^{B} \exp(\mathcal{S}(\phi_i, \phi_k))}$$

- Classifier where the logits are replaced by similarities.
- *B*-way classifier with one positive target per sample.
- Find the positive sample among all others.

Contrastive Loss

- Naming is confusing and inconsistent.
- Noise Contrastive Estimation (Gutmann, Hyvarinen, 2010)
 - Learn to separate data and noise with logistic regression.
- Proper name: InfoNCE ("CPC", van den Oord, et al., 2018)
 - Use soft-max crossentropy to find positive sample within the batch.
- Popular loss: now often simply called contrastive loss.

Multi-Modal Representation Learning

Goal: learn a common embedding space for different modalities.

- Typical setup:
 - one encoder per modality.
 - Train contrastively using matching pairs across modalities.
- Strong representations as they relate information from multiple sources.

CLIP: Contrastive Language-Image Pre-Training

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, 2021

CLIP Implementation

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# t - learned temperature parameter
```

```
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_e]
T_f = text_encoder(T) #[n, d_e]
```

```
# scaled pairwise cosine similarities [n, n]
logits = dot(I e, T e.T) * exp(t)
```

```
# symmetric loss function
labels = arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

	T ₁	T ₂	T ₃		T _N
I ₁	$I_1 \cdot T_1$	$I_1 \cdot T_2$	$I_1 \cdot T_3$		$I_1 {\cdot} T_N$
I ₂	$I_2 \cdot T_1$	$I_2 \cdot T_2$	$I_2 \cdot T_3$		$I_2 \cdot T_N$
I ₃	$I_3 \cdot T_1$	$I_3 \cdot T_2$	$I_3 \cdot T_3$		$I_3 \cdot T_N$
:	:	:	:	·.	:
I _N	$I_N \cdot T_1$	$I_N \cdot T_2$	$I_N \cdot T_3$		$I_N \cdot T_N$

SigLIP

- Zhai et al., ICCV'23 (SigLIP2, arxiv'25)
- Possible improvement over CLIP (hard to tell)
- Focused on efficiency, multi-GPU training
- Back to negatives and positives instead of contrastive training
- Each entry in the matrix is a binary classifier

SigLIP implementation

img_emb : image model embedding [n, dim]
txt_emb : text model embedding [n, dim]
t_prime, b : learnable temperature and bias
n : mini-batch size

```
t = exp(t_prime)
zimg = l2_normalize(img_emb)
ztxt = l2_normalize(txt_emb)
logits = dot(zimg, ztxt.T) * t + b
labels = 2 * eye(n) - ones(n) # -1 with diagonal 1
l = -sum(log_sigmoid(labels * logits)) / n
```

Models learn to read

- Many examples of images containing text in the training data
- Models "learn to read"
- Easy adversarial examples

iPod		
42%	78%	an apple
56%	91%	a picture of an apple
60%	0%	an ipod
99%	0%	an apple with a note saying "ipod"

from SigLIP2 colab notebook

Video and Sound

Visually Indicated Sounds

Andrew Owens Phillip Isola Josh McDermott Antonio Torralba Edward Adelson William Freeman

Vision and Sound

Multi-Modal Retrieval

- Combine multi-modal representation learning with clustering.
- Learn an audio-visual embedding from videos with sound.

Multi-Modal Retrieval

 Table 4: Retrieval via various number of nearest neighbors.

]	HMDB			UCF		
Recall @	1	5	20	1	5	20	
3D-Puzzle [42]	_	_	_	19.7	28.5	40.0	
OPN [46]	_	_	_	19.9	28.7	40.6	
ST Order [12]	_	_	_	25.7	36.2	49.2	
ClipOrder [78]	7.6	22.9	48.8	14.1	30.3	51.1	
SpeedNet [11]	_	_	_	13.0	28.1	49.5	
VCP [51]	7.6	24.4	53.6	18.6	33.6	53.5	
VSP [19]	10.3	26.6	54.6	24.6	41.9	76.9	
SeLaVi	24.8	47.6	75.5	52.0	68.6	84.5	

Ranking Loss

- What if we have multiple positives?
- We want the similarities of all positives to be greater than to all negatives.
- Sometimes, there is a ranking between positives.
- Ranking losses can be built from pairwise losses (e.g. triplet).
- Ranking useful to learn retrieval problems.

Representation Learning for Retrieval

Representation Learning for Retrieval

- Representation learning is very useful for retrieval problems.
- This is because there is usually not a predefined set of classes.
- Even if there is, the set of classes is too large to train a classifier.

- ↓ Beetles (Order Coleoptera)
- 4. Water, Rove, Scarab, Long-horned, Leaf, and Snout Beetles (Suborder Polyphaga)
- L Cucujiform Beetles (Infraorder Cucujiformia)
- Lady, Fungus, Scavenger, and Bark Beetles (Superfamily Coccinelloidea)
- Lady Beetles (Family Coccinellidae)
 - General Subfamily Coccinellinae)
 - 4 Black-spotted Lady Beetles (Tribe Coccinellini)

Greater Lady Beetles (Genus Harmonia)	Observations		
L Antipodean Ladybird (Harmonia antipoda)	57		
ь Harmonia areolata	0		
Asian Lady Beetle (Harmonia axyridis)	274,755		
⊢ Harmonia bicolor	6		
Large Spotted Ladybird (Harmonia conformis)	6,660		
Harmonia decussata	0		
Greater Asian Lady Beetle (Harmonia dimidiata)	1,193		
4 Harmonia eucharis	140		
Harmonia manillana	1		
Harmonia nigromarginata	0		
Maculate Ladybird (Harmonia octomaculata)	837		
Leopard Lady Beetle (Harmonia pardalina)	31		
Cream-streaked Ladybird (Harmonia quadripunctata)	2,515		
Sixteen-spotted Ladybird (Harmonia sedecimnotata)	283		
4 Harmonia shoichii	2		
Gamma Tortoise-shelled Ladybird (Harmonia testudinaria)	1,786		
Chequered Lady Beetle (Harmonia vigintiduomaculata)	51		
Yedo Lady Beetle (Harmonia vedoensis)	133		

