Representation Learning

Computer Vision - Lecture 17



Further Reading

 Slides from S Savarese, A Zamir

e Slides from F Li

« Slides from A Geiger



https://web.stanford.edu/class/cs331b/2016/index.html
http://cs231n.stanford.edu/slides/2023/lecture_13.pdf
https://drive.google.com/file/d/1CFn_zTzdx-xg6x-_NdPAqI4gIfWrftKm/view

So far: Task Learning

 Learn a function from input to task output.
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Slide adapted from S Savarese
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So far: Task Learning

 Learn a function from input to task output.
« Representation Learning: general representation + task head
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Representation Learning

Supervised Unsupervised

« Given a task, learn a  Given only data, find a
representation for it. representation for it.

« Representation is often « Representation often does
constrained to task(s). not align exactly with tasks.

* today  Part of Lecture 18



Handcrafting Representations

- Was the only way for a long time.

e (almost) Worked for many important applications:
* Image Retrieval
« Structure-from-motion
 Face detection
* etc.

* Why alternatives?
« Can't quite find the discriminative signature for a problem.

« Discriminative signature can be found, but hard to approach
programmatically.
« Too many contributing factors to the problem.
 Fusion non-trivial. Rule-based fusion outruled.

. Fusiaoln of contributing factors itself a comparably complex representation
problem.



Correspondences

Point correspondences estimated by a classic algorithm: SIFT
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Recall: SIFT Descriptor 3

« Compute edge orientations and global SOOS EuE BEOG S
orientation. SHEE DEBE BERA AERe

» Rotate all edges so that the global Rl
orientation is “up”. Image gradients

* Split the local area around the keypoint
Into 4x4=16 regions.

« Compute edge histograms (8 directions) f,':f-.{ié
for each region. T

« Concatenate histograms: descriptor 128
dimensional vector.

Keypoint descriptor



Learning a Keypoint Descriptor

« Use a dataset with point similarity
correspondences. T

 Extract patches around keypoints.
* Positives from matching keypoints.

decision network

- Negatives from random keypoints. | ConvNet
. Train a model to predict the similarity w1
between two patches.
patch 1 patch 2

10
Zagoruyko & Komodakis. 2015.



Local Feature Learning Dataset

Brown, Hua, Winder, Discriminative Learning of Local Features, 2011
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Low-level matching architectures
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Low-level matching: qualitative results
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Handcrafted vs Learned features

Zamir et al. 2016.

Evaluation of matching

=
i
==
-

False positive rate

D]
b= Method FPRO5 [AUCT
~ Ours 0.05 | 0.98
? Zagoruyko @ehame| 0.23 | 0.96
R Zagoruyko siamese) | 0.25 | 0.95
= e SIMO-SerTa(premained) 0,28 | 0.95
8 - - = SIFT 041 {092
o Root-SIFT 0.43 |0.92
) - V_IP(givcn 3D normals)| 0.65 | 0.86
——— Simonyan e-trained) | 0.70 | 0.91
E = = = DAISY 0.72 | 0.86
— ——— Simonyan@iey) | 0.76 | 0.86
----- ASIFT 0.80 | 0.84

@ Human - -

0 | ! | ‘ |
0 0.2 0.4 0.6 0.8 1

(a)

0.4

0.3

(b)

Wide Baseline Handling (matching)

Baseline angle (degrees)

Method Deterioration|
Ours m=0.6 =107
——— Simo-Serraereming| m=2.0 x10?
----- ASIFT m=2.0 x10?
- 'le(given 3D normals) m=.04 x10?
Zagoruykosiamese) | m=2.2 =10?
Zagoruykoehanmel) | m=2.5 x103
- = =DAISY m=3.7 x10?
- e Simonyanibery) | m=4.1 x10?
- SIMOoNyan (re-trained) | m=4.3 =103
- = =SIFT m=35.3 x10?
, , | Root-SIFT m=5.9 x10?
0 30 60 90

14



LIFT: Learned Invariant Feature Transform

. Learn a keypoint detector.
. Learn a keypoint orientation predictor.
« Learn a keypoint descriptor.

SCORE MAP

description

vector

15
K. M.Yi, E. Trulls, V. Lepetit, P. Fua, LIFT, 2016



LIFT

« Works well in domains close to the training data.

o Slower than SIFT.
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Representation Learning Losses

« Given a set of samples x; we learn a function that maps each
sample into an embedding space f(x;) = ¢; € R4,

« Tolearn f we need a loss function that acts on representations.

. Training data comes with positive x;; and negative examples
x; 1 for each sample x; (or you can construct them easily).

17



Cosine Similarity

« Cosine similarity: cosine of the angle between embedding
vectors.

« Cosineis 1 if the embeddings align, O if orthogonal, -1 if
opposite.

fx)=¢
Ny

? =9l
'Scos((pi» ¢]) — (iSLT $j



Cosine Similarity

« For each sample, we maximise the similarity with its positives,
and minimise similarity with its negatives.

Leas(p1) = — —Z Seos (B0, 817) + = Z Seos (91 Bi)

« Often select one random positive and one random negative for
faster loss approximation.

Lcos(qbi) — _Scos(¢i» ¢L+) + CS‘cos((lbi» ¢l_)



Negatives

« Why do we need negatives?

« Degenerate solution: f(x) = c predicts a constant for all x.

['cos(f(xi))f(xj)) — _Scos(c: c) =-1
« This minimises the loss for all training samples

« But: the representation is useless.



Triplet Loss

« Cosine similarity forces positive pairs to be almost identical
(colinear) and negatives to be fully dissimilar.

« Often: select one random positive and one random negative for
faster loss approximation.

» Triplet: anchor, positive, negative (¢, ¢, ¢ ™)
« l|dea: relative loss.

« Similarity between positive pair should be greater than
similarity of negative pair.



Triplet Loss
Similarity between positive pair should be greater
than similarity of negative pair. @<©
Ltriplet(qb» ¢+' ¢_) — maX(O) 5(¢! ¢_) _ S(¢, ¢+) + E)
if S(p,p") > 8(¢p,d7) + € for a margin e > 0. l training

Can use any similarity/distance metric :

max(0, |l¢p — ¢™ || = ll¢p — || + €) @\Q/Q



Similarity vs. Distance

« Similarity
- Cosine similarity, correlation

- Intersection over Union

o Distance
- Euclidian distance (L1, L2, ...)

- Manhattan distance

« Remember: minimise distance, maximise similarity.



Efficiency Considerations

« The tripletloss uses three function evaluations for each loss

fQO), f(x™), f(x7).
« Can we do better?
e f(x)=¢isslow, while L£(:) is much faster in comparison.
« Find a way to use each ¢ multiple times.

. lIdea: in a training batch, we can use most other samples as
negatives too.



Efficiency

« Construct a training batch such that
- each sample x; has exactly one positive pair x;°
- all other samples x; (and x;") are negatives to x; (and x;")

- Example: include exactly two images of each class.

« Now we can reuse the computed embeddings for every sample

z £trip1et(¢i» ¢l+' ¢]) + Ltriplet(d)ir ¢1+' ¢1+)
JE
« Batch of 6N samples. Before: 2N loss evals . Now: 4N(2N — 1)



Contrastive Loss

« Simplify notation: i* is the index of the positive pair to i.

exp(S(qbi, G+ ))
£=1 exp(5(¢i» Pk ))

« Minimised by large numerator and small denominator.

» Same ides: maximise S(¢;, ¢;” ) and minimise all other
similarities.



Recall: Softmax Cross-entropy loss

Soft-max classifier for K classes Cy:
exp fi (x)

Zj eprj(x)

p(Ci|x) = softmax; f(x) =
Cross-entropy: .
- z Per (Ck, X) 10g(P(Ck |X))
k

Since all psr(Cy|x) are zero, except the target class Cgrp,i.e. per(Cer, x) =1,
this simplifies to
exp fer(x)

Zj eprj(x)

—log(p(Cerlx)) = —log



Contrastive Loss

“log exp(S(¢p;, d;+))
Z£=1 exp(5(¢i: Pk ))

» Classifier where the logits are replaced by similarities.
« B-way classifier with one positive target per sample.

* Find the positive sample among all others.



Contrastive Loss

« Naming is confusing and inconsistent.

« Noise Contrastive Estimation (Gutmann, Hyvarinen, 2010)

- Learn to separate data and noise with logistic regression.

« Proper name: InfoNCE (“CPC", van den Oord, et al., 2018)

- Use soft-max crossentropy to find positive sample within the batch.

« Popular loss: now often simply called contrastive loss.



Multi-Modal Representation Learning

o Goal: learn a common embedding space for different
modalities.

« Typical setup:
- one encoder per modality.

- Train contrastively using matching pairs across modalities.

« Strong representations as they relate information from multiple
sources.



CLIP: Contrastive Language-Image Pre-Training

. . \
Learn a joint

embedding space | Zeeeer e . T
of images and text R
Double
Contrastive loss:
across text and
Images
Image
Encoder

Trained on 400M
Image-Text pairs.

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, 2021
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CLIP Implementation

image encoder - ResNet or Vision Transformer
text encoder - CBOW or Text Transformer

I[n, h, w, c] - minibatch of aligned images
T[n, 1] - minibatch of aligned texts

t - learned temperature parameter

+H= = =

extract feature representations of each modality
_f = image encoder (I) #[n, d e]
_f = text encoder(T) +#[n, d e]

H H ==

# scaled pairwise cosine similarities [n, n]
logits = dot(I e, T e.T) * exp(t)

# symmetric loss function

labels = arange (n)

loss 1 = cross entropy loss(logits, labels, axis=0)
loss t = cross entropy loss(logits, labels, axis=1)
loss = (loss i + loss t)/2

T, 1) i TN
T, I, T, (RN I,-T, O
Is LT | T, LT
I | 1T | InTo | I3 I Ty
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SigLIP

« Zhai et al., ICCV'23 (SigLIP2, arxiv'25)

 Possible improvement over CLIP (hard to tell)

« Focused on efficiency, multi-GPU training

« Back to negatives and positives instead of contrastive training

« Each entry in the matrix is a binary classifier



SigLIP implementation

# img emb : image model embedding [n, dim]

# txt emb : text model embedding [n, dim]

# t prime, b : learnable temperature and bias

# n : mini-batch size

t = exp(t prime)

zilmg = 12 normalize (1mg emb)

ztxt = 12 normalize (txt emb)

logits = dot(zimg, ztxt.T) * t + b

labels = 2 * eye(n) - ones(n) # -1 with diagonal 1

1 = -sum(log sigmoid(labels * logits)) / n

34



Models learn to read

« Many examples of
Images containing
text in the training
data

« Models “learn to

read” an apple

a picture of an apple

an ipod

* Ea SY adversarial an apple with a note saying "ipod"
exa m p | es from SigLIP2 colab notebook

35


https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP2_demo.ipynb#scrollTo=mt5BIywzzA6c

Video and Sound

M

Visually Indicated Sounds

Andrew Owens Phillip Isola 'josh MeDermott

<

Antonio Torralba Edward Adelson WiIIiam'_Fre"'éman

A Owens et al., Visually Indicated Sounds, 2015


https://andrewowens.com/vis/

Vision and Sound

waterfall

A Owens et al., Ambient Sound Provides Supervision for Visual Learning, 2016

waterfall

sSea
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Multi-Modal Retrieval

« Combine multi-modal representation learning with clustering.
« Learn an audio-visual embedding from videos with sound.

training
AR e S o e o R

ankhqrn
clustering
Bylo (W4 ()] ——

I

training

o Al

| . t’u(x) . F—'g-»/“ s

-

Demo link 38

Asano et al., Labelling unlabelled videos from scratch with multi-modal self-supervision, 2020


https://www.robots.ox.ac.uk/~vgg/research/selavi/

Multi-Modal Retrieval

Table 4: Retrieval via various number of
nearest neighbors.

HMDB UCF

Recall@ 1 S5 20 1 S 20
3D-Puzzle [42] — — — 19.7 28.5 40.0
OPN [46] — —  — 199 287 40.6
ST Order [12] - - - 257 362 492
ClipOrder [78] 7.6 22.9 48.8 14.1 30.3 51.1
SpeedNet [11] - - - 13.0 28.1 495
VCP [51] 7.6 244 53.6 18.6 33.6 53.5
VSP [19] 103 26.6 54.6 24.6 41.9 76.9
SeLaVi 24.8 47.6 75.5 52.0 68.6 84.5

Asano et al., Labelling unlabelled videos from scratch with multi-modal self-supervision, 2020



Ranking Loss

« What if we have multiple positives?

. We want the similarities of all positives to be greater than to all
negatives.

« Sometimes, there is a ranking between positives.
« Ranking losses can be built from pairwise losses (e.g. triplet).

« Ranking useful to learn retrieval problems.



Representation Learning for Retrieval

Brown, et al., Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval, 2020
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Representation Learning for Retrieval

« Representation learning is very useful for retrieval problems.

« This is because there is usually not a predefined set of classes.

« Evenif there is, the set of classes is too large to train a classifier.

172,815,608 463,213 346,209 2,955 513
OBSERVATIONS 9  SPECIES IDENTIFIERS ® | OBSERVERS

271,528 observations

Asian Lady Beetle

www.inaturalist.org
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http://www.inaturalist.org/

Beetles (Order Coleoptera)
. Water, Rove, Scarab, Long-horned, Leaf, and Snout Beetles (Suborder Polyphaga)
. Cucujiform Beetles (Infraorder Cucujiformia)
L. Lady, Fungus, Scavenger, and Bark Beetles (Superfamily Coccinelloidea)

Lady Beetles (Family Coccinellidae)

. Common Lady Beetles (Subfamily Coccinellinae)

. Black-spotted Lady Beetles (Tribe Coccinellini)

L. Greater Lady Beetles (Genus Harmonia) Observations
Antipodean Ladybird (Harmonia antis 57
Harmonia areolata 0
Asian Lady Beetle (Harmonia axyridis) 274,755
Harmonia bicolor 6
Large Spotted Ladybird (+zarmonia conformis) 6,660
Harmonia decussata 0
Greater Asian Lady Beetle (+armoni 1193
Harmonia eucharis 140
Harmonia manillana 1
Harmonia nigromarginata 0
Maculate Ladybird (Harmon 837
Leopard Lady Beetle (Harmonia pardalina) 31
Cream-streaked Ladybird (Harmon 2,515
Sixteen-spotted Ladybird (Harmonia sedecimnotata 283
Harmonia shoichii 2
Tortoise-shelled Ladybird ( Harmonia testudinaria) 1,786
Chequered Lady Beetle (Harmonia vigintiduomaculata 51
Yedo Lady Beetle (Harmoni 133

(c) Nihad Kudo - some rights reserved (CC BY-NC)
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