
Representation Learning
Computer Vision – Lecture 17
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Further Reading

• Slides from S Savarese, A Zamir

• Slides from F Li

• Slides from A Geiger
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https://web.stanford.edu/class/cs331b/2016/index.html
http://cs231n.stanford.edu/slides/2023/lecture_13.pdf
https://drive.google.com/file/d/1CFn_zTzdx-xg6x-_NdPAqI4gIfWrftKm/view


So far: Task Learning

• Learn a function from input to task output.
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Representation Mathematical Model 
(e.g., classifier)

So far: Task Learning

• Learn a function from input to task output.

• Representation Learning: general representation + task head
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“Transcript”
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Macbeth 
was guilty.

Slide adapted from S Savarese

https://web.stanford.edu/class/cs331b/2016/index.html


Representations
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Slide adapted from S Savarese
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Representation Learning

Supervised

• Given a task, learn a 
representation for it.

• Representation is often 
constrained to task(s).

• today

Unsupervised

• Given only data, find a 
representation for it.

• Representation often does 
not align exactly with tasks.

• Part of Lecture 18
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Handcrafting Representations

• Was the only way for a long time. 
• (almost) Worked for many important applications:

• Image Retrieval
• Structure-from-motion
• Face detection
• etc.

• Why alternatives?
• Can’t quite find the discriminative signature for a problem.
• Discriminative signature can be found, but hard to approach 

programmatically.
• Too many contributing factors to the problem.

• Fusion non-trivial. Rule-based fusion outruled. 
• Fusion of contributing factors itself a comparably complex representation 

problem.
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Correspondences
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Point correspondences estimated by a classic algorithm: SIFT



Recall: SIFT Descriptor

• Compute edge orientations and global 
orientation.

• Rotate all edges so that the global 
orientation is “up”.

• Split the local area around the keypoint 
into 4x4=16 regions.

• Compute edge histograms (8 directions) 
for each region.

• Concatenate histograms: descriptor 128 
dimensional vector.
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Learning a Keypoint Descriptor

• Use a dataset with point 
correspondences.

• Extract patches around keypoints.

• Positives from matching keypoints.

• Negatives from random keypoints.

• Train a model to predict the similarity 
between two patches.
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Zagoruyko & Komodakis. 2015.



Local Feature Learning Dataset
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Brown, Hua, Winder, Discriminative Learning of Local Features, 2011



Low-level matching architectures
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Zagoruyko & Komodakis. 2015.



Low-level matching: qualitative results
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Zagoruyko & Komodakis. 2015.



Handcrafted vs Learned features
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Zamir et al. 2016. 



LIFT: Learned Invariant Feature Transform

● Learn a keypoint detector.
● Learn a keypoint orientation predictor.
● Learn a keypoint descriptor.
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K. M. Yi, E. Trulls, V. Lepetit, P. Fua, LIFT, 2016



LIFT

● Works well in domains close to the training data.
● Slower than SIFT.
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Representation Learning Losses

● Given a set of samples 𝑥𝑖 we learn a function that maps each 
sample into an embedding space 𝑓 𝑥𝑖 = 𝜙𝑖 ∈ ℝ𝑑.

● To learn 𝑓 we need a loss function that acts on representations.

● Training data comes with positive 𝑥𝑖,𝑗
+  and negative examples 

𝑥𝑖,𝑘
−  for each sample 𝑥𝑖 (or you can construct them easily).

17𝑥𝑖 𝑥𝑖,𝑗
+  𝑥𝑖,𝑘

−  



Cosine Similarity

● Cosine similarity: cosine of the angle between embedding 
vectors.

● Cosine is 1 if the embeddings align, 0 if orthogonal, -1 if 
opposite.

𝑓 𝑥 = 𝜙

෠𝜙 =
𝜙

𝜙

𝒮cos 𝜙𝑖 , 𝜙𝑗 = ෠𝜙𝑖
𝑇 ෠𝜙𝑗
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Cosine Similarity

● For each sample, we maximise the similarity with its positives, 
and minimise similarity with its negatives.

ℒcos 𝜙𝑖 = −
1

𝐽𝑖
෍

𝑗=1

𝐽𝑖

𝒮cos 𝜙𝑖 , 𝜙𝑖,𝑗
+ +

1

𝐾𝑖
෍

𝑘=1

𝐾𝑖

𝒮cos 𝜙𝑖 , 𝜙𝑖,𝑘
−

● Often select one random positive and one random negative for 
faster loss approximation. 

ℒcos 𝜙𝑖 = −𝒮cos 𝜙𝑖 , 𝜙𝑖
+ + 𝒮cos 𝜙𝑖 , 𝜙𝑖

−
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Negatives

● Why do we need negatives?

● Degenerate solution: 𝑓 𝑥 = 𝑐 predicts a constant for all 𝑥.

ℒcos 𝑓(𝑥𝑖), 𝑓(𝑥𝑗) = −𝒮cos 𝑐, 𝑐 = −1

● This minimises the loss for all training samples

● But: the representation is useless.
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Triplet Loss

● Cosine similarity forces positive pairs to be almost identical 
(colinear) and negatives to be fully dissimilar.

● Often: select one random positive and one random negative for 
faster loss approximation. 

● Triplet: anchor, positive, negative (𝜙, 𝜙+, 𝜙−)

● Idea: relative loss.

● Similarity between positive pair should be greater than 
similarity of negative pair.
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Triplet Loss

Similarity between positive pair should be greater 
than similarity of negative pair.

ℒtriplet 𝜙, 𝜙+, 𝜙− = max 0, 𝒮 𝜙, 𝜙− − 𝒮 𝜙, 𝜙+ + 𝜖

Minimum: ℒtriplet = 0 
if 𝒮 𝜙, 𝜙+ > 𝒮 𝜙, 𝜙− + 𝜖 for a margin 𝜖 > 0.

Can use any similarity/distance metric :

max 0, 𝜙 − 𝜙+ − 𝜙 − 𝜙− + 𝜖
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Similarity vs. Distance

● Similarity

○ Cosine similarity, correlation

○ Intersection over Union

○ …
● Distance

○ Euclidian distance (L1, L2, …)

○ Manhattan distance

● Remember: minimise distance, maximise similarity.
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Efficiency Considerations

● The triplet loss uses three function evaluations for each loss 
𝑓(𝑥), 𝑓(𝑥+), 𝑓(𝑥−).

● Can we do better?

● 𝑓 𝑥 = 𝜙 is slow, while ℒ ⋅  is much faster in comparison.

● Find a way to use each 𝜙 multiple times.

● Idea: in a training batch, we can use most other samples as 
negatives too. 
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Efficiency

● Construct a training batch such that 

○ each sample 𝑥𝑖 has exactly one positive pair 𝑥𝑖
+

○ all other samples 𝑥𝑗 (and 𝑥𝑗
+) are negatives to 𝑥𝑖 (and 𝑥𝑖

+)

○ Example: include exactly two images of each class.

● Now we can reuse the computed embeddings for every sample

෍

𝑗≠𝑖

ℒtriplet 𝜙𝑖 , 𝜙𝑖
+, 𝜙𝑗

 + ℒtriplet 𝜙𝑖 , 𝜙𝑖
+, 𝜙𝑗

+

● Batch of 6𝑁 samples. Before: 2𝑁 loss evals . Now:  4𝑁(2𝑁 − 1) 25



Contrastive Loss

● Simplify notation: 𝑖+ is the index of the positive pair to 𝑖.

−log
exp 𝒮 𝜙𝑖 , 𝜙𝑖+  

σ𝑘=1
𝐵 exp 𝒮 𝜙𝑖 , 𝜙𝑘 

● Minimised by large numerator and small denominator.

● Same ides: maximise 𝒮 𝜙𝑖 , 𝜙𝑖
+ and minimise all other 

similarities.
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Recall: Softmax Cross-entropy loss

Soft-max classifier for 𝐾 classes 𝐶𝑘: 

𝑝 𝐶𝑘 𝑥 = softmax𝑘 𝑓(𝑥) =
exp 𝑓𝑘(𝑥)

σ𝑗 exp 𝑓𝑗 𝑥

Cross-entropy:

− ෍

𝑘

𝐾

𝑝𝐺𝑇(𝐶𝑘 , 𝑥) log 𝑝 𝐶𝑘 𝑥

Since all 𝑝𝐺𝑇(𝐶𝑘|𝑥) are zero, except the target class 𝐶𝐺𝑇 ,i.e. 𝑝𝐺𝑇 𝐶𝐺𝑇 , 𝑥 = 1 , 
this simplifies to 

− log 𝑝 𝐶𝐺𝑇 𝑥 = − log
exp 𝑓𝐺𝑇 𝑥

σ𝑗 exp 𝑓𝑗 𝑥
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Contrastive Loss

−log
exp 𝒮 𝜙𝑖 , 𝜙𝑖+  

σ𝑘=1
𝐵 exp 𝒮 𝜙𝑖 , 𝜙𝑘 

• Classifier where the logits are replaced by similarities.

• 𝐵-way classifier with one positive target per sample. 

• Find the positive sample among all others. 
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Contrastive Loss

● Naming is confusing and inconsistent.

● Noise Contrastive Estimation (Gutmann, Hyvarinen, 2010)

○ Learn to separate data and noise with logistic regression.

● Proper name: InfoNCE (“CPC”, van den Oord, et al., 2018)

○ Use soft-max crossentropy to find positive sample within the batch.

● Popular loss: now often simply called contrastive loss. 
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Multi-Modal Representation Learning

● Goal: learn a common embedding space for different 
modalities. 

● Typical setup: 

○ one encoder per modality.

○ Train contrastively using matching pairs across modalities.

● Strong representations as they relate information from multiple 
sources.
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CLIP: Contrastive Language-Image Pre-Training

● Learn a joint 
embedding space 
of images and text

● Double 
Contrastive loss: 
across text and 
images

● Trained on 400M 
Image-Text pairs.
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Radford et al., Learning Transferable Visual Models From Natural Language Supervision, 2021



CLIP Implementation

# image_encoder - ResNet or Vision Transformer

# text_encoder - CBOW or Text Transformer

# I[n, h, w, c] - minibatch of aligned images

# T[n, l] - minibatch of aligned texts

# t - learned temperature parameter

# extract feature representations of each modality

I_f = image_encoder(I) #[n, d_e]

T_f = text_encoder(T)  #[n, d_e]

# scaled pairwise cosine similarities [n, n]

logits = dot(I_e, T_e.T) * exp(t)

# symmetric loss function

labels = arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)

loss_t = cross_entropy_loss(logits, labels, axis=1)

loss = (loss_i + loss_t)/2
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SigLIP

• Zhai et al., ICCV’23  (SigLIP2, arxiv’25)

• Possible improvement over CLIP (hard to tell)

• Focused on efficiency, multi-GPU training

• Back to negatives and positives instead of contrastive training

• Each entry in the matrix is a binary classifier
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SigLIP implementation

# img_emb : image model embedding [n, dim]

# txt_emb : text model embedding [n, dim]

# t_prime, b : learnable temperature and bias

# n : mini-batch size

t = exp(t_prime)

zimg = l2_normalize(img_emb)

ztxt = l2_normalize(txt_emb)

logits = dot(zimg, ztxt.T) * t + b

labels = 2 * eye(n) - ones(n) # -1 with diagonal 1

l = -sum(log_sigmoid(labels * logits)) / n
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Models learn to read

• Many examples of 
images containing 
text in the training 
data

• Models “learn to 
read” 

• Easy adversarial 
examples 
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from SigLIP2 colab notebook 

https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP2_demo.ipynb#scrollTo=mt5BIywzzA6c


Video and Sound
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A Owens et al., Visually Indicated Sounds, 2015 Video source

https://andrewowens.com/vis/


Vision and Sound
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A Owens et al., Ambient Sound Provides Supervision for Visual Learning, 2016



Multi-Modal Retrieval

● Combine multi-modal representation learning with clustering.

● Learn an audio-visual embedding from videos with sound.
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Asano et al., Labelling unlabelled videos from scratch with multi-modal self-supervision, 2020

Demo link

https://www.robots.ox.ac.uk/~vgg/research/selavi/


Multi-Modal Retrieval
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Asano et al., Labelling unlabelled videos from scratch with multi-modal self-supervision, 2020



Ranking Loss

● What if we have multiple positives?

● We want the similarities of all positives to be greater than to all 
negatives.

● Sometimes, there is a ranking between positives.

● Ranking losses can be built from pairwise losses (e.g. triplet).

● Ranking useful to learn retrieval problems.
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Representation Learning for Retrieval
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Brown, et al., Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval, 2020



Representation Learning for Retrieval

● Representation learning is very useful for retrieval problems.

● This is because there is usually not a predefined set of classes.

● Even if there is, the set of classes is too large to train a classifier.
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www.inaturalist.org 

http://www.inaturalist.org/
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