Unsupervised Learning

Computer Vision - Lecture 18



Further Reading

 Slides from S Savarese, A Zamir

e Slides from F Li

e Slides from Y Asano



https://web.stanford.edu/class/cs331b/2016/index.html
http://cs231n.stanford.edu/slides/2023/lecture_13.pdf
https://github.com/yukimasano/yukimasano.github.io/blob/master/assets/pdf/DL1/lecture13-self-sup-learning.pdf

Basics: Supervised Learning

Dataset D = {(x;,y;)|1 <i < N}

Inputs x;

Outputs y;

Training/Validation/Testing D = Dy U D, U D,

Learn f(x) =y by minimizing X, ;. yep, £ (%), ¥:)

Hope to generalise: ¥, ,yep L(f (x0), )



Basics: Unsupervised Learning

Dataset D = {x;|1 <i < N}
Inputs x;

Outputsy;
Training/Validation/esting D = D U Dy,
Testing on downstream task T = {(x;, v)|1 < i < M}

Learn f(x) =? by minimizing ??
Hope to generalise to another task ., yer £(f (Xi), vi)



What we need to do

the model to learn the downstream task without labels

e Build into the model
 Find a for the training scheme
 Often: prevent and



Learning Signal Toolbox

are general ideas to incorporate
model general assumptions about the world/task

This lecture contains a wide set of tools for learning from
priors

« Can be used in all settings un/weakly/fully-supervised
* Not specific to tasks, apply to many areas
* For free*! (no annotations needed)

*you still need to cite some papers



Learning Signal Toolbox

- Recovery: f(M(x)) <->x

- Bottleneck: f(g(x)) <-> x with restriction on g(x)

» Dataset: f(x1) <-> f(x,)

- Invariance: f(m(x)) <-> f(x)

- Equivariance: f(r(x)) <->n'(f(x)) often = = =’ but not always
- Transformation estimation: f(m(x,0)) <-> 6

* Generative: f(z)<->D

 Task-specific: f(x) <-> priors

» Uncertainty: f(x) <-> own error

 Many more!



Learning Signal Toolbox

Reconstruction

"
-~
» —_—) f
-




Learning Signal Toolbox

Recovery

or

(Context autoencoder [Pathak et al.; CVPR €17],
denoising autoencoder [Vincent et al.; ICML ‘08],
Diffusion models [Sohl-Dickstein et al., ICML ‘15], etc.)



Rcovery: Inpainting

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. Efros. Context Encoders: Feature Learning by Inpainting. CVPR 2016
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https://openaccess.thecvf.com/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf

Recovery: Colorization

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016



http://richzhang.github.io/colorization/

Colorization: Architecture
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R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016



http://richzhang.github.io/colorization/
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A. Efros, R. Zhang

Source




Inherent Ambiguity

Grayscale

14
Source: A. Efros, R. Zhang



Inherent Ambiguity

Prediction Ground Truth
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Source: A. Efros, R. Zhang



Biases

16
Source: A. Efros, R. Zhang



Biases
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Source: A. Efros, R. Zhang



Learning Signal Toolbox

Bottleneck
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RIMBDMIY
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Low dimensionality
Sparsity
Dictionary
Task-specific
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Learning Signal Toolbox

Equivariance
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w7 (f(r@)) = f@
* Often =1’ is often more difficult f(r(x)) =n'(f(x))
because inverse is hard 19



Learning Signal Toolbox

Transformation Estimation

f
Rotation [Gidaris et al.; ICLR 18]
T T [ A
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Jigsaw puzzle [Noroozi & Favaro; ECCV "16] y



Context prediction

* Pretext task: randomly sample
a patch and one of 8
neighbors _ S ———

« Quess the spatial relationship i
between the patches )

Example:

)

Question 1:

A: Bottom right A: Top center

21
C. Doersch, A. Gupta, A. Efros. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015



https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.pdf

Context prediction: Details

AlexNet-like architecture

softmax
| 2 N
fc9 (8) - -
fc8 (4096) "' - "'
- L TTA T AT
fc7 (4096)
i, i,
fc6 (4096) p--------1 fc6 (4096)
pool5 (3x3,256,2) pool5 (3x3,256,2)
conv5 (3x3,256,1) fp-=-=-=-=-=---" conv5 (3x3,256,1)
conv4 (3x3,384,1) p-=-=-=-=-=---"- conv4 (3x3,384,1)
conv3 (3x3,384,1) p--------" conv3 (3x3,384,1)
LRN2 LRN2
pool2 (3x3,384,2) pool2 (3x3,384,2)
conv2 (5x5,384,2) f-=-=-====~-"1 conv2 (5x5,384,2)
LRN1 shared LRN1
pooll (3x3,96,2) weights | pooll (3x3,96,2)
convl (11x11,964)F - -------1 convl(11x11,96,4
Prevent “cheating”: sample patches with gaps, (‘ ) (‘ )
pre-process to overcome chromatic aberration / Patch 1 / [ Patch 2 /

22
C. Doersch, A. Gupta, A. Efros. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015



https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.pdf

Jigsaw puzzle solving

Crop out tiles Shuffle Pretext task: reassemble

Claim: jigsaw solving is easier than context prediction, trains faster, transfers better

23
M. Noroozi and P. Favaro. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV 2016



https://arxiv.org/pdf/1603.09246.pdf

Jigsaw puzzle solving: Details

Permutation Set

index permutation Reorder patches according to
the selected permutation

64 9.4,68325,1,7
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) 11x11x96  5x5x256 3x3x384 3x3x384 3x3x256
Predetermined set of

1000 permutations
(out of 362,880 possible)

M. Noroozi and P. Favaro. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV 2016
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https://arxiv.org/pdf/1603.09246.pdf

Learning Signal Toolbox

Generative
GANSs

i -

[Goodfellow et al.; NeurlPS “14]

real/fake?

Autoregressive
it

[van den Oord et al,;
ICML 16, NeurlIPS ‘16]

Variational Autoencoder

sampling
z~ N(u,0)

e
P
EE

[Kingma et al.; ICLR ‘14]

Diffusion Model

[Sohl-Dickstein et al.; ICML “15]

D
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Learning Signal Toolbox

Dataset

L5

* Different definitions of “related” and “unrelated” samples exist  “Contrastive”
26

related

unrelated B




SImMCLR

Maximize agreement

0] 90
h; <— Representation — h
() ()

Introduce nonlinear
projection (g) between
representation (h) and
feature used for
computing contrastive
loss (2).

Use large mini-batch
Size.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020
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https://arxiv.org/pdf/2002.05709.pdf

Learning Signal Toolbox

Invariance

* Often with strong augmentations, but without changing the identity of the image
28



SImMCLR: Augmentations

“ PR b

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

Crop

Cutout

Color

Sobel

Noise

1st transformation

Blur

Rotate
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2nd transformation

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.
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T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020

-50


https://arxiv.org/pdf/2002.05709.pdf

DINQ: Self-Distillation with No Labels

 Student-Teacher training.

« Teacher's weights are >
exponential moving average - T
(EMA) of the student. L..I D-HDD
» Teacher sees global view. EMA] J Loss

e Student sees local view. |
. > .

» Student tries to predict
teacher’s distribution. backprop




DINO - sharpening and centring
* Collapse: same prediction for all samples.

- Centring: fr(x) —~ XV, fr(x)

« Sharpening: low temperature for teacher softmax.

* Loss: Entropy between student and teacher distributions.



DINO features are popular

Co-segmentation and part co-segmentation ‘ Point correspondence

(b) LOST [45]. (c) TokenCut (ours)

(d) Correspondences

[Amir et al.: CVPR 22]

. 9. ¥ & | & (d) Attention maps associated to different patches
[ 4P, [Wang et al.; CVPR‘22]

Bl
-

Structure Output

[Tumanyan et al., CVPR22] 32

Structure Appearance




Fvaluation

« Occasionally simple: when training aligns fully with the task
« Often: some processing is needed
* Bridging the final gap between model and task

e In a practical setting: unsupervised learning is just the
beginning

* In research: how far do we get with as little supervision as
possible?



Unsupervised vs. Self-Supervised?

5 Andrew Davison
Y @AjdDavison
Can anyone explain if there is a difference between
unsupervised and self-supervised learning? To me they
seem the same and | find myse|f using both terms Self supervised uses a different loss function

interchangeably (I prefer unsupervised), but | feel like
I'm confusing people who understand them to mean

They are the same, -

. . To be a bit cute, unsupervised is the term for older
different thlngs. techniques that don't work. Self supervised is the term
7:16 PM - Jun 14, 2022 - Twitter for Android for newer methods that do work.
Unlike SSL, it's difficult to abbreviate unsupervised labels are derived (perhaps implicitly) using problem-specific principles
learning

"self-supervised” when the code looks exactly like supervised

There is no common definition (and someone will always complain)!



Unsupervised vs. Weakly Supervised

Weak supervision means supervision but for a different task

« Segmentation from bounding boxes/captions/classes
* (Dense) depth from stereo

 Captioning from object labels

 Human in the loop annotations

 Objects from sound



Unsuperv

Se

Image Classification

36



Unsupervised Image Classification

Grouping Semantics

f Class 42 Horse
Assignments
found \.NI.th Cat
supervision

f Class 27 | Butterfly
Class 1 = Cat

Class 27 = Butterfly
f Class 42 Class 42 = Dog Cow

37



Hungarian Matching

 Find the lowest cost 1-to-1 assignments between N clusters
and N labels.

e Cost: a N X N matrix C that contains the errors we induce
when we match cluster i to label j.

 Find a row permutation matrix P that minimizes the
diagonal.

mpin Tr(PC)

« Complexity: O(N?)



Classifying Images without Labels

 |DDCIFAR10 fasTL10

° Learn a Self-superVised L [0 CIFAR100-20 UDImageNet
representation =« I 1 .
* Loss: Neighbouring images H I H
same class + all classes I % & ®

Number of nearest neighbors

have equal size S

Method Backbone Labels Top-1 Top-5

Supervised Baseline ResNet-50 v 25.4 48.4

Pseudo-Label ResNet-50 v - 51.6

VAT + Entropy Min. [56] ResNet-50 v 47.0

. . . InstDisc [51] ResNet-50 v 39.2

BigBiGAN ResNet-50(4x) v 55.2

 Even better with self-training R v 1B
CPC v2 ResNet-161 v 52.7 77.9

SimCLR [7] ResNet-50 v 48.3 75.5

SCAN (Ours) ResNet-50 X 39.9 60.0

[Gansbeke et al,; ECCV ‘20]



Self-labelling by Clustering

Learning Labelling

7 f

N e e =
NS
- ey, o

A5

7 ”

“class 37" “class 37"

update label

alternate optimisation steps assignment
with

update CNN

weights with min H (¢, p)

mpin H(q,p) optimal
optima
transport

Cross-Entropy:
N by problem)

1
H(,p) = =2 ) > a(vlx)logp(ylx;, ©)
i=1 y

40
[Asano et al.; ICLR 20]



Clusters are interpretable
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cIuster 1908, purlty 0 952 cIuster 503 purlty 0.930 cIuster 393, purity: 0.668
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Clusters are interpretable

T ! .........

n 'uulllmmmmm |

cluster 406, purity: 0.455 cluster O, purity: 0.558 cIuster 2568, purity: 0.377

42



GAN-based Segmentation

- ReDo: Layer-wise generative models for unsupervised object discovery

>L‘:<

inferred mask M1 generated region E

lmerrednmkm.

- Advantage: You get segmentation for free!
« Drawbacks: fragile training, difficulty scaling due to custom architecture

—
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w-g"é-, = X
e .~ - — ~
,'»:—- Lt o

Input |

-Jggi
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3D from asingle i image

gL ) l
3D ground truth or multi-view depth maps
shape models

silhouettes keypoints camera viewpoint




3D from a single imag

N M@

j.'if.f;'.i'.ﬂ»
y
3D ground truth or multi-view depth maps

shape models

silhouettes keypoints camera viewpoint



Unsupervised Learning of 3D Objects

Training Data Output

single-view images of a category instance-specific 3D shapes

NO other supervision!

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild, S Wu et al., CVPR 2020



Observation |

 Symmetry is a strong constraint!

47



Observation I

« Shading is a strong constraint! (Shape from shading)

Photometric method for determining surface orientation from multiple images
Robert J Woodham, Optical engineering, 1980



Photo-Geometric Autoencoding

input I
N
- v v
W encoder encoder

L

= |

vieww  depth d texture
Reconstruction
Loss
Renderer [«

reconstruction 1



Photo-Geometric Autoencoding

-~ input I
\ 4 \4
W encoder encoder

.

vieww  depth d texture

Reconstruction X
Loss
Renderer

reconstruction 1

A




Photo-Geometric Autoencoding

_ @ horizontal flip
Input I
N
. \ 4 4
encoder encoder encoder

decoder decoder

view w depthd depth d’ texture fllpped
oprroe S I T
Reconstruction
[ Loss J

A

Renderer

reconstruction 1



Photo-Geometric Autoencoding

@ horizontal flip

N N
depth d’ texture  flipped

Q|

vieww  depth



Photo-Geometric Autoencoding

@ horizontal flip

input I
*’ \ 4 y \4
encoder encoder encoder encoder
> N
<
- v -
vieww depthd depthd  lightl albedoa albedoa’
o1 { Lo o
soree B . Y flip switch
[ Reconstruction J :
Loss

@ :

A\ A 4

shading

A

Renderer

reconstruction I canonical view ]



Photo-Geometric Autoencoding

@ horizontal flip

input I
encoder encgder encc:der enc‘(;der
> R
<
- v -
vieww depthd depthd  lightl albedoa albedoa’
o1l { Lo o—
soree D . Y flip switch
[ Reconstruction J :
Loss

@ :

A\ A 4

shading

A

Renderer

reconstruction I canonical view ]



-Photo-Geometric Autgencoding

@ horizontal flip
input I

\ 4 A 4 y \ 4

encoder encoder encoder encoder encoder
decoder decoder decoder

-

AT
. . -.‘-
N
conf.o conf.oc' vieww depthd depthd  lightl albedoa albedoa’
L0 o—! L6, o—! L0 o—!
/2 [ N fli e
Reconstruction :
Loss R
Renderer |«

reconstruction I canonical view ]



Photo-Geometric Autoencoding

@ horizontal flip
input I

\ 4 \ 4

\ 4 y
encoder encoder encoder encoder encoder
decoder decoder decoder

</ \X/ '_‘:

Nl [ Saal > R

3

- ) v )
conf.o conf.oc' vieww depthd depthd  lightl albedoa albedoa’
Lo o—! Lo o—! Lo o—!
v\ 7T 777" fli e
[ Reconstruction .~
Loss

A

A\ A 4

A

Renderer

reconstruction I canonical view ]



input reconstruction reconstruction
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