
Vision & Language
Computer Vision – Lecture 19
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Further Reading

• Slides from J Redmon

• Slides from V Ordóñez-Román 

• Slides from J Mu
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https://courses.cs.washington.edu/courses/cse455/23wi/
https://www.cs.rice.edu/~vo9/deep-vislang/
http://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf


What is Vision and Language?

Anything at the intersection of Computer Vision and Natural 
Language Processing. Systems and models that depend a little bit 
on both.

• Computer Vision: How do we teach machines to process, 
represent and understand images? E.g. to recognize objects in 
images.

• Natural Language Processing: How do we teach machines to 
process, represent and understand text? E.g. to classify or 
generate text.

3



dog  

cat

person

holding

tree

computer

using

[1 0 0 0 0 0 0 0 0 0 ]

[0 1 0 0 0 0 0 0 0 0 ]

[0 0 1 0 0 0 0 0 0 0 ]

[0 0 0 1 0 0 0 0 0 0 ]

[0 0 0 0 1 0 0 0 0 0 ]

[0 0 0 0 0 1 0 0 0 0 ]

[0 0 0 0 0 0 1 0 0 0 ]

0

1

2

3

4

5

6

one-hot encodings
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Word Representations

• Represent each word as a vector.

• Learn the vector representation together with the task.

• Problem: English has 170,000 words in current use, with an 
additional 47,000 obsolete words.

• Problem: word variations, typos, new words, other 
languages, etc.
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Issues with Word based Tokenization

• Hard for other languages that do not use spaces in-between 
words. 

• Word tokenization can also be bad for languages where the 
words can be “glued” together like German or Turkish.
• 555 = fünfhundertfünfundfünfzig. 
• Infeasible to have a word embedding for every number in the German 

language.

• It is problematic to handle words that are not in the vocabulary 
e.g. a common practice is to use a special <OOV> (out of 
vocabulary) token.
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Words to Tokens

• Instead of splitting by words, learn the splitting from data.

• Budget: 𝑁 Tokens.

• Target: find assignment of strings to tokens that minimizes 
the number of used tokens to represent all data.

• Substrings that occur often will be represented by a single 
token.

7



Solution: Sub-word Tokenization

• Byte-pair Encoding Tokenization 
(BPE)
• Start from small strings and based on 

substring counts iteratively use larger 
sequences until you define a vocabulary 
that maximizes informative subtokens. 
That way most will correspond to words 
at the end.

• Byte-level BPE Tokenizer
• Do the same but at the byte 

representation level not at the substring 
representation level.

8
huggingface/tokenizers



Tokenization used in GPT-4
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https://platform.openai.com/tokenizer

The cat is in the house The geologist made an effort to rationalize the 
explanation

fünfhundertfünfundfünfzig (555 – German) Η γάτα είναι στο σπίτι (The cat is in the house – Greek)

https://platform.openai.com/tokenizer


Tokenization used in GPT-4o
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https://platform.openai.com/tokenizer

The cat is in the house The geologist made an effort to rationalize the 
explanation

fünfhundertfünfundfünfzig (555 – German) Η γάτα είναι στο σπίτι (The cat is in the house – Greek)

https://platform.openai.com/tokenizer


Tokenization used in GPT-4
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https://platform.openai.com/tokenizer

深層学 (deep learning - Japanese)

কেমন আছেন (how are you – Bengali) வணக்கம் (hello – Tamil)

Le chat est dans la maison 
(the cat is in the house - French)

https://platform.openai.com/tokenizer


Tokenization used in GPT-4o
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https://platform.openai.com/tokenizer

深層学 (deep learning - Japanese)

কেমন আছেন (how are you – Bengali) வணக்கம் (hello – Tamil)

Le chat est dans la maison 
(the cat is in the house - French)

https://platform.openai.com/tokenizer


Language Models

• 2 types of transformer architectures: 

• Encoder transformer: 
Encode a sequence into a fixed-size representation. 
e.g. ViT, BERT, …

• Decoder transformer: Decode a fixed-size representation into a 
sequence. 
e.g. GPT-3

• Can be used together (e.g. T5) or separately (GPT).
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Attention is all you need

• Encoder-Decoder

• Decoder needs masking to only 
look at previous tokens.

• Predict next token probabilities.

• Often: cross attention in 
decoder.
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Vaswani et al. “Attention Is All You Need”, 2017



Masked Language Modelling

• Train self-supervised: input recovery.

• Mask words from the input.

• Fill in the blanks.

• GPT-4: train on 13T tokens (ca. 50TB 
of text!)

• This model itself is not very useful. It 
can only generate text.
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Generation (GPT-3)
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Brown, Tom, et al. "Language models are few-shot learners”, 2020



Instruction Tuning (e.g. FLAN-T5)
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Chung, Hyung Won, et al. "Scaling instruction-finetuned language models.“, 2022



18
source Instruction Tuning (e.g. OPT-IML by Facebook)

https://arxiv.org/pdf/2212.12017.pdf


ChatGPT

19
Ouyang, Long, et al. "Training language models to follow instructions with human feedback, 2022



Step by Step: Train a Reward Model that 
learns from Human Ratings e.g. from 1 to 5
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source

https://gist.github.com/JoaoLages/c6f2dfd13d2484aa8bb0b2d567fbf093


Step by Step: Train the LM to generate text that 
gets high reward but still produces stuff that 
makes sense
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source

https://gist.github.com/JoaoLages/c6f2dfd13d2484aa8bb0b2d567fbf093


Direct Preference Optimization

22
img sourceRafailov, et al., NeurIPS’23

https://medium.com/@joaolages/direct-preference-optimization-dpo-622fc1f18707


Jailbreaks
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source

https://www.reddit.com/r/ChatGPT/comments/12uke8z/the_grandma_jailbreak_is_absolutely_hilarious/


Jailbreaks
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Referring Expressions

• Referring expressions have been studied since the 70’s. 

• Attributes: color, orientation, location, relative locations, size 
modifiers.

• Single and multiple objects. 

• Early work analyzed simpler synthetic images 

• Recent work has moved to realistic scenarios. 
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GRE3D3 Corpus
 Viethen and Dale 2008

[20 scenes]

TUNA Corpus
van Deemter et 
al 2006

Size Corpus
Mitchell et al 2011

[96 scenes]

GenX Corpus
FitzGerald et al 2013

[269 scenes]

Typicality Corpus
Mitchell et al 2013

[35 scenes]

Referring Expression 

26



Referring to objects
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Player 2
Orange bottle on the right

Player 1

Orange bottle on the right

Referit Game
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ReferItGame Dataset
130k Referring expressions for 90k Objects in 19k images

Blue shirt man

Blue guy

Second guy from 
left

Referit Game Dataset
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Referring Expression Comprehension

MAttNet: Modular Attention Network for Referring Expression Comprehension
Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal, Tamara L.Berg, 2018



Visual Question Answering

• Given image and 
question, predict 
answer.

• Answer and 
question can be 
anything.

• Evaluation: tricky!
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Antol, Stanislaw, et al. "VQA: Visual question answering.“, 2015 
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Visual Question Answering 



MDETR: Modulated Detection for Multimodal Understanding

Kamath, Aishwarya, et al. "MDETR: Modulated detection for end-to-end multi-modal understanding, 2021



MDETR: For Question Answering
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Vision-and-Language Transformers
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Vision-and-Language for Navigation
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Fairness in Vision and Language 
Models



Robotics: Instruction Following
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Assistive Technologies
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CLIP

40
Radford, Alec, et al. "Learning transferable visual models from natural language supervision, 2021



Visual Grounding

• Ground text in images and vice versa.

• Region as Text: insert coordinate predictions into the text. “A 
cat [10, 25, 204, 400] on a chair [120, 359, 200, 300]”.

• Region as Embedding: learn special embeddings for regions.

• Increases trust, allows verification beyond metrics.
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GLIP
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Zhang, Haotian, et al. "Glipv2: Unifying localization and vision-language understanding, 2022



Stable Diffusion v2
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https://towardsdatascience.com/what-are-stable-diffusion-models-and-why-are-they-a-step-forward-for-image-generation-aa1182801d46



Vision & Language Now

Two options:

• Train a large-scale LVM-VisionLanguageModel (GPT-4o, 
Gemini, LLaVa,…) that solves all tasks zero-shot.

• Use a large LLM and add some vision capabilities to it by 
fine-tuning or other means.
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Multi-Modal Few-Shot Learning

45
Tsimpoukelli, Maria, et al. "Multimodal few-shot learning with frozen language models." 2021



Training:
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Inference:



Flamingo

Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." 2022
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Flamingo
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Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." 2022



Flamingo
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Pointing to things
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Model: molmo, source

https://x.com/goon_nguyen/status/1839130119484645410


VLM Benchmarks

51
source

https://molmoai.org/#features


Jailbreak
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